
2162-2337 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LWC.2018.2795605, IEEE Wireless
Communications Letters

1

Spatio-Temporal Wireless Traffic Prediction with

Recurrent Neural Network
Chen Qiu, Yanyan Zhang, Zhiyong Feng, Ping Zhang, Shuguang Cui

Abstract—Accurate prediction of user traffic in cellular net-
works is crucial to improve the system performance in terms of
energy efficiency and resource utilization. However, existing work
mainly considers the temporal traffic correlations within each cell
while neglecting the spatial correlation across neighboring cells.
In this paper, machine learning models that jointly explore the
spatio-temporal correlations are proposed. Specifically, several
recurrent neural network structures are utilized. Furthermore, a
multi-task learning approach is adopted to explore the common-
alities and differences across cells in improving the prediction
performance. Base on real data, we demonstrate the benefits of
joint learning over spatial and temporal dimensions.

Index Terms—Spatio-temporal Model, Recurrent Neural Net-
work, Multi-task Learning.

I. INTRODUCTION

With the rapid development of wireless communication net-

works, there is an increasing demand of accurate cellular traffic

prediction to improve the network performance. For example,

to reduce the energy consumption of cellular networks, the

functional base station sleeping mechanism could be adopted

based on the knowledge of future traffic [1].

However, most existing prediction methods only consider

the temporal traffic correlation within each cell to learn

its pattern [2], neglecting the potential benefits of jointly

considering spatial correlations across the entire network.

Some efforts have already been made to model the spatio-

temporal characteristics of wireless traffic [3], [4]. Since users

continuously move within a given cellular network, the traffic

flows across neighboring base stations are correlated, such that

learning over both the spatial and temporal dimensions would

improve the traffic prediction performance.

Artificial neural networks could be easily adapted to learn

and predict the base station traffic over the temporal dimen-

sion. The authors in [1], [5] applied general artificial neural

networks to predict the base station traffic under different

wireless network setups. However, a regular neural network

is hard to be generalized into the joint spatio-temporal setup,

since it could not distinguish the spatial and temporal corre-

lations. On the other hand, Recurrent Neural Network (RNN)

is an extended form from regular neural networks such that it
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is capable of keeping the internal memory while processing

the sequential inputs [6], which provides an effective way

to jointly explore the spatio-temporal relationships. In this

paper, we thus adopt RNN to exploit the spatial and temporal

correlations among neighboring base stations.

In addition, multi-task learning is a promising way to

improve the learning and predicting performance by jointly

considering multiple inputs, while the different features be-

tween tasks could be utilized effectively [7]. In applying multi-

task learning under our problem setup, we develop a multi-task

learning approach and analyze the corresponding experimental

results.

The rest of this paper is organized as follows. Section II

describes the basic system model. In Section III, the learning

architectures over the spatio-temporal model are proposed.

In Section IV, experimental results are provided along with

detailed analysis. Finally, Section V concludes the paper.

II. SYSTEM MODEL

A. Problem Formulation

We first start with a general formulation of the problem.

Consider a system with N base stations and let the observation

of traffic volumes be over the past K time slots. In time t,

let xt =
[

x1t , x
2
t , · · · , x

N
t

]

be the input vector with length

N , which denotes the traffic volumes of all the base stations

at time t. We know that if we merely consider the temporal

correlation within each base station, the input sequence {xt}
would be degraded to a scalar sequence containing the current

local traffic volume. Here our objective is to find a prediction

function x̂t+1 = f(xt,xt−1, · · · ,xt−K+1) that achieves:

min
f

lim
T→∞

1

T

T
∑

t=1

L(x̂t+1,xt+1)

where the loss function L(·) measures the difference between

the predicted and real traffic values. Nevertheless, a general

solution for minimizing the above objective function would be

intractable, which encourages us to approximate the optimal

predicting function with a pre-defined structure.

B. Recurrent Neural Network

The RNN model can be expressed as ht−k =
g(xt−k,ht−k−1), k ∈ {0, 1, · · · ,K−1}, where g is the trans-

fer function applied on the observation window recursively,

and ht−k is the hidden state at time slot t − k, which is a

function of both the previous neural network state ht−k−1

and the current input vector xt−k. As the previous state is
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Fig. 1. Spatio-Temporal Learning Structures

taken as one input, it carries the memory for learning from

the internal correlations over time. When k = 0, the final ht

is considered to be a summary over all the past inputs, which

can be used to produce the predicted cellular traffic volumes

for the next time slot under our problem setup.

However, a simple RNN may have difficulties in handling

long-term dependencies. Therefore, we adopt the widely used

Long Short Term Memory (LSTM) structure [6] as a special

RNN to realize the function g, which incorporates an addi-

tional vector ct−k to carry the long-term memory. We refer

readers to [6], [8] for more details about RNN and LSTM.

Based on LSTM, we further develop a multi-task learning

approach that could deal with several prediction tasks at the

same time to leverage the mutual benefits. By considering

the traffic history over multiple base stations as samples

drawn from different but related distributions, the joint spatio-

temporal prediction is cast as simultaneous learning over

several correlated tasks. As the wireless traffic volumes are

generated in neighboring cells, the resemblance and dissimi-

larity across the multiple tasks are both important components

to explore. Therefore, employing such a multi-task learning

framework should lead to performance gains.

III. LEARNING ARCHITECTURE

In this section, we first propose several spatio-temporal

learning architectures for traffic prediction. Then we describe

how to integrate those spatio-temporal learning architectures

into a unified multi-task learning framework. Before we get

into further details, let us consider a decomposition of our

predictor f as f = ψ ◦ ξ, where ◦ indicates applying function

ψ on function ξ’s output. The input data first go through the

feature learning machine ξ(·), which is used to transform in-

puts into features. The second step involves the representation

function ψ(·), which maps features into a prediction [9]. As we

discussed in the previous section, we use RNN as the feature

learning machine where we take the final hidden state ht,

generated after applying the transfer function g for multiple

steps over the observation window, as the output of ξ(·). The

representation function ψ(·) that transforms the final state into

a prediction is implemented as a fully connected feedforword

neural network layer, given by ψ(ht) = Wht, where W is a

trainable weight vector.

A. Basic Spatio-Temporal Learning Structures

As RNN naturally captures the temporal information, here

we mainly focus on how to explore the spatial correlation

across base stations. As shown in Fig. 1, three basic structures

with different spatial information exploration schemes are first

proposed, which could be later generalized into the multi-task

learning framework. For simplicity, only a two-cell scenario

is presented.
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Fig. 2. Multi-task Learning Architectures

1) 1-to-1: The traffic volumes’ history Xi
t =

[

xit, x
i
t−1, x

i
t−2, · · · , x

i
t−K+1

]T
of a particular base station i

is used to predict its own traffic with a local learning machine

ξi, which is actually a pure temporal model and mainly used

as a benchmark. The prediction process for each base station

is given by

x̂it+1 = ψi ◦ ξi(Xi
t). (1)

2) n-to-1: In this architecture, the prediction for each

base station would still be served by its own dedicated

learning machine. However, the full set of traffic volumes

Xt =
[

X1
t , X

2
t , · · · , X

N
t

]

from all base stations is provided to

each learning machine for the joint exploration of the spatio-

temporal information. The prediction process for each base

station can be formulated as

x̂it+1 = ψi ◦ ξi(Xt). (2)

3) n-to-n: Different from the previous setup, no dedicated

RNN blocks are used. Instead, a shared RNN block is adopted.

All the traffic volumes are provided to this shared block ξS

to produce the shared features for the prediction of all the

base station traffics at the same time. Then we have the n-to-n

prediction process for each base station as

x̂it+1 = ψi ◦ ξS(Xt). (3)

B. Multi-task Learning Architecture

In the sense of simultaneous learning, the n-to-n architecture

in Fig. 1(c) could be seen as one special case of multi-

task learning. However, such a n-to-n model is still a simple

sequential layout of neural networks. As can be seen in

(3), the predictions for different base stations are based on

the same set of features, which implies that the differences

between tasks could not be expressed effectively. To further

clarify this, let us assume without the loss of generality that

the loss function takes the following form L(x̂t+1,xt+1) =
1

N

∑N

i=1
||x̂it+1 − xit+1|| and take the derivative of the loss

function with respect to features as:

∂L

∂ξSj
=

N
∑

i=1

∂L

∂ψi

∂ψi

∂ξSj
. (4)

When using the gradient descent [9] to minimize the loss, each

feature represented in the shared part is always influenced by

the other tasks. Thus the ability to represent the difference

between base stations is limited under such a fully shared

architecture.

To overcome this problem, we propose the multi-task learn-

ing architecture, which combines the shared and dedicated

learning machines. Hence, the task-specific features could be

generated and exploited to improve the performance. More
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Fig. 3. Performance for Different Cells

specifically, the n-to-n architecture in Fig. 1 is combined

with either the 1-to-1 or the n-to-1 architecture to form the

multi-task learning architectures, as illustrated in Fig. 2. The

predicting functions for the n-to-n with 1-to-1 and the n-to-n

with n-to-1 models can be respectively cast as

x̂it+1 = ψi ◦
{

ξS(Xt), ξ
i(Xi

t)
}

, (5)

x̂it+1 = ψi ◦
{

ξS(Xt), ξ
i(Xt)

}

, (6)

where the {·, ·} operator indicates the concatenation of two

vectors. Under such a formulation there is one special set of

features ξi generated for each base station i, which only serves

a particular task, whose derivative in the loss function L is

∂L

∂ξij
=

∂L

∂ψi

∂ψi

∂ξij
. (7)

These special feature sets are handled by the individual

learning machines as shown in Fig. 2. The remaining n-to-

n feature set ξS collects the common features shared among

all the base stations, which is handled by a shared learning

machine.

IV. EXPERIMENT RESULTS

In this section, numerical experiments are conducted to

demonstrate the effectiveness of the proposed spatio-temporal

wireless traffic prediction framework. We first discuss the

dataset and evaluation metrics. Then the results from different

learning architectures are compared and analyzed.

A. Experiment Setup

Our methods are evaluated over a real cellular traffic data set

collected from a big city in Asia. The data used in this work

covers the traffic volumes of 16 different base stations within

a 15-day period in year 2013, which is aggregated at one-hour

intervals. Such a group of 16 base stations are located along

some main streets; thus a high level of spatial correlations are

presented.

In the experiments, we use the first 70% samples to train the

learning model, and the remaining 30% to validate the results.

The Mean Squared Error ( 1

N
1

T

∑N

i=1

∑T

t=1
(x̂it+1 − xit+1)

2)

is employed to measure the accuracy of traffic prediction

for N base stations over T time steps. To make the result

more comparable, MSE is measured on normalized data with

standard deviation equal to 1 for each base station. The

LSTM implementation given by Keras [10] is used in our

experiments, where the recurrent dropout [8] is adopted to

improve the result.
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Fig. 4. Performance under different experiment parameters

B. Result of Spatio-Temporal Learning

In this section, the capabilities of our spatio-temporal

models are investigated by comparing with other existing

methods. The reference approaches selected include the Online

Support Vector Regression (OSVR) [11], the Nonparametric

Regression (NR) [12], the Adaptive Kalman (AK) filter [13],

and the Deep Neural Networks (DNN) [14].

The performance comparisons among different models are

illustrated in Fig. 3. Since the neural network based methods

are influenced by random initialization, the results of our

spatio-temporal models and DNN are evaluated by averaging

over 100 different runs. In addition, we use the Bayesian

optimization algorithm [15] to tune the hyper-parameters for

the comparing methods and present the optimized results here.

We see that the RNN based models outperform all comparing

approaches in most cases. The AK model is a linear model

that is not able to explore the non-linear correlations, even with

a much longer observation window. Although the OSVR and

DNN models are very powerful, the laking of certain recurrent

structures would make it very difficult to capture temporal

correlations. Meanwhile, the NR model is trying to mimic the

historic data and fails to actually capture the characteristics.

Among those proposed RNN based models in Fig. 1, the

pure temporal model (1-to-1) is very often the worst. Although

at some base stations it outperforms the n-to-1 model, the n-

to-1 model is still the better one in most cases.

Another important observation is that the n-to-n model

outperforms the n-to-1 model, i.e. instead of training a model

for each base station, predicting those base stations all together

could provide us even better results. This observation may be

somehow counter-intuitive that a multi-objective optimization

solution can outperform the dedicated solutions. However, by

predicting multiple base station traffic volumes at the same

time, the mapping from multiple inputs to multiple outputs

could provide extra information and encourage the model to

explore the spatial correlation among base stations. In addi-

tion, from the feature learning point of view, by introducing

additional optimization objectives, we enforce the network

to extract more general features from the training data and

prevent overfitting issues.

Some experiments are also designed to illustrate the impact

of several experiment parameters, which can help us better

understand the spatio-temporal information embedded in our

data set.

1) Size of Recurrent Network: Fig. 4(a) shows the result un-

der different numbers of RNN neurons. The best performance

of OSVR, NR and DNN models are also drawn as a reference.

When RNN does not have enough neurons, the information

representation ability is limited, especially for the n-to-n
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case, where overwhelmed information causes underfitting. By

increasing the number of neurons, more features are extracted.

However, the improvement stops after the learning machine

size of 150 is reached. This experiment further shows that the

n-to-n model explores extra information, which is extracted by

the increased number of neurons.

2) Size of Spatial Input: In this experiment, the most

correlated n “neighbors” with the highest correlation with the

target base station are selected to provide the spatio-temporal

information. As illustrated in Fig. 4(b), the different curves

correspond to different sizes of the learning machine (number

of neurons) used in the experiment. Although the n-to-n model

is used, only the predicted result of the target base station is

evaluated. In this way, the benefit of spatial information to a

particular base station is presented. The overall performance

is improved by the increased size of spatial inputs, but the

improvement almost stops when the input size is greater than

8. The result is intuitive since the most correlated “neighbors”

already contribute the majority of spatial information.

C. Result of Multi-task Learning

To validate the capability of multi-task learning, we chose

the n-to-n model as the shared learning machine in the multi-

task learning framework, where the size of the shared learning

machines is set as 150. The best result achieved by the n-to-

n model alone is also shown as a reference. As illustrated

in Fig. 5, improved performance is achieved by both of two

multi-task learning frameworks. However, the improvements

in multi-task learning are not that obvious. The reason is that

the n-to-n model and the multi-task learning frameworks share

the same input and output structure. Since the same amount

of information is presented to the learning machines, it is

understandable that the improvements of multi-task learning

are small, although different tasks in the n-to-n model may

infer each other. In addition, our dataset is collected from a set

of base stations covering similar geographic areas (along some

main streets). As the data from different base stations share

similar features with limited differences, the performance

improvement of the multi-task learning models is limited.

Furthermore, the n-to-n with 1-to-1 framework performs

slightly better than the n-to-n with n-to-1 one. Since the shared

learning machine has explored the spatial correlation, pro-

viding spatial information to the dedicated learning machine

would not further improve the performance; it may make the

training more difficult to converge. In addition, we see that

the performance gets worse with the size of the dedicated

learning machine increase. This degenerated result is caused

by the large dedicated learning machine size that dominates

the behavior of the overall multi-task learning. Since the

shared learning machine has captured the shared features, the

dedicated features for each base stations become limited. The

dedicated learning machines may then experience overfitting

issues.

V. CONCLUSION

In this work, we presented multiple RNN based learning

models along with unified multi-task learning frameworks to

explore spatio-temporal correlations among base stations, in

the goal of improving the traffic prediction performance. Base

on real data, we provided detailed evaluation on different

learning models and demonstrate that the spatial correlation

among base stations could provide valuable information to

improve the prediction accuracy. In addition, we showed

that the commonalities and differences across different base

stations could be better exploited by the proposed multi-task

learning frameworks.
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