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Abstract—Dynamic spectrum sharing will facilitate the in-
terference coordination in device-to-device (D2D) communica-
tions. In the absence of network level coordination, the timing
synchronization among D2D users will be unavailable, leading
to inaccurate channel state estimation and device detection,
especially in time-varying fading environments. In this study,
we design an asynchronous device detection/discovery framework
for cognitive-D2D applications, which acquires timing drifts and
dynamical fading channels when directly detecting the existence
of a proximity D2D device (e.g. or primary user). To model and
analyze this, a new dynamical system model is established, where
the unknown timing deviation follows a random process, while
the fading channel is governed by a discrete state Markov chain.
To cope with the mixed estimation and detection (MED) problem,
a novel sequential estimation scheme is proposed, using the
conceptions of statistic Bayesian inference and random finite set.
By tracking the unknown states (i.e. varying time deviations and
fading gains) and suppressing the link uncertainty, the proposed
scheme can effectively enhance the detection performance. The
general framework, as a complimentary to a network-aided
case with the coordinated signaling, provides the foundation
for development of flexible D2D communications along with
proximity-based spectrum sharing.

Index Terms—D2D, spectrum sharing, out-of-coverage, device
discovery/detection, asynchronous detection, Bayesian inference

I. INTRODUCTION

DEVICE to device (D2D) communications, which exploit
the natural proximity of randomly distributed devices

and establish a direct link between two neighbors without
routing via based-station (BS) [1]–[3], constitute an appealing
way to flexibly deploy future wireless networks. By offering
the prospect of improved resource utilization (i.e. both the
spectrum and energy efficiency), D2D may also effectively
alleviate the bottleneck effect of BS and thereby promotes the
overall throughput of cellular networks [4], [5]. In this regards,
D2D has the potential to accommodate for the expected ex-
plosion in the number of wireless devices (e.g. 10× increasing
in 2019) [6], and forms part of the envisaged 5G ultra-dense
networks [7], [8].
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In D2D, despite the benefits of centralized coordination
from BS [9]–[11], minimal involvement of network will be
of critical importance, especially in fallback publicity safety
scenarios or out-of-coverage applications [2], [12], [13]. In
adverse situations (e.g. without dedicated pilot or timing
synchronization), D2D devices have to probe the surrounding
and adjust their transmission strategies to control interference,
using its own distributed sensing of unknown environments.
As a complementary to network-aided D2D communications,
the interference coordination will be expected to be realized
intelligently by D2D devices themselves.

Focusing on the non-coordinated and asynchronous scenar-
ios, the combination of dynamic spectrum sharing (DSS) and
D2D, known as cognitive D2D (C-D2D), is considered in this
paper, and a potential paradigm for future D2D communica-
tions is studied. The major advantages of C-D2D are two-
fold. First, the spectrum scarcity, worsened by the emerging
ultra-dense networks, will be alleviated by opportunistically
accessing spectrum in proximity [14], [15]. Recently, LTE in
unlicensed band (LTE-U) opens a wide perspective for DSS-
based commercial communications. Second, a listen-before-
talk (LBT) technique provides a natural tool of interference
mitigation, by excluding the coordination from BS. Thus, the
listening to unknown wireless environments, e.g. detecting or
discovering active device, will be of great importance to C-
D2D [11], [16], [17]. Note that, in the context of C-D2D,
the device discovery and spectrum detection may have the
same formulation, i.e. directly identifying whether there are
signals on the specific band and, if possible, estimating what
the associated link information states (LSI) are, see Fig. 1-
a. For asynchronous C-D2D communications, direct device
discovery/detection [18], which will be implemented in a blind
manner [19], thereby requires in essence two functions: the
existence detection and the LSI acquisition.

The first objective, i.e. identifying active user on specific
spectrum, can be solved by classical spectrum sensing meth-
ods [16], [21], for examples, energy detector [22] or other
schemes [17], e.g. the covariance-based technique [23] and
the compressive sensing [20], if there exists no information
uncertainty. In non-coordinated scenarios, unfortunately, tradi-
tional detection algorithms will become less attractive. For one
thing, the accurate timing of detection tends to be infeasible.
I.e., there is no agreement among unassociated devices and,
therefore, random timing drifts between emission and detec-
tion slots are inevitable. As a result of such an information
uncertainty, the involved statistics in detection, i.e. the summed
energy or the instantaneous signal-to-noise ratio (SNR), would
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be unknown. So, it is unable to determine a proper decision
threshold for detection. For another, the wireless environment
may also change dynamically [24], [25], which renders the
fading channel time-dependent and arouses additional informa-
tion uncertainty in decision process, further deteriorating the
detection performance. Whilst the fixed-threshold technique
may be used (e.g. relying on a Neyman-Pearson criterion),
it would noticeably degrade the performance, by causing the
high miss detection (as illustrated by Fig. 1-b) and thereby
the harmful interferences to primary transmission. Another
expedient approach is to marginalize such uncertain states (e.g.
dynamical channel or timing drift) [22] or exploiting their
expectation as one practical alternative, which achieves less
competitive performance.

The second objective, the acquisition of LSI will be of great
significance to C-D2D communications [26], which should be
estimated in real-time, in order to improve detection perfor-
mance and optimize subsequent transmission. For example,
except for promoting device detection, accurate timing is
required in the hand-shake of two devices in proximity, whilst
channel gains are critical to power control and mode selection
(if the network involvement is available) [11], [32]. However,
in out-of-coverage situations the acquisition of such LSI must
be realized blindly, at the same time of detecting unassociated
device. The involved two-level interruptions, i.e. (1) the mutual
influence in estimating unknown timing and channel gains, and
(2) the mutual interruption between detection and estimation
as well as the resulting error propagation, will make most
Bayesian schemes invalid.

In this study, a novel asynchronous device detection paradig-
m is proposed for C-D2D communications, whereby the
centralised coordination tend to be not practical. To be specific,
we formulated the challenging task as one track-before-detect
(TBD) problem, as known in the target-tracking literature
[27]–[29]. In contrast to conventional sensing approaches
where the signal is first detected, and then the signal is
estimated, our new scheme jointly accomplishes detection and
estimation in order to make use of all statistic information
available in received signals. To do so, rather than a classical
two-hypothesis test (THT) formulation, we adopted another
new concept of random finite set (RFS). By unifying the binary
existence of target signals and the associated state of object as
one generalized random variable, RFS has become one pow-
erful analysis tool to deal with object tracking problems [25],
[26], [28], [30], [31], [43]. To sum up, the main contributions
are summarized as follows.

1. We consider two inherent difficulties in C-D2D device
detection, and thereby formulate a general dynamical system
model. Both evolving timing drifts and time-dependent fading
channels are cast into the model. Such two information uncer-
tainties, which are characterized respectively by two random
processes, are viewed as two hidden states to be estimated.

2. We find multiple heterogeneous random variables render
the algorithm design a tough work. Specifically, the device de-
tection concerns an unknown binary variable (i.e. “1” for active
or “0” for sleep), whilst the estimation of timing drifts and
fading channels is associated with another high-dimensional
discrete space. Meanwhile, the timing drift is input-dependent,
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Fig. 1. (a) Left: The spectrum detection is performed by a secondary user,
while the two primary users are communicating with each other. Right: The
device discovery is realized among two UEs. (b) Top: The synchronization
between the unassociated device and the D2D devices is accomplished.
Bottom: The dynamic timing drift exists among two unassociated devices.

while the channel fading is input-independent. Another major
challenge is that the detection and estimation process will be
coupled mutually. To combat this, we treat the mixed detection
and estimation (MDE) process as one generalized estimation
problem, and formulate the heterogeneous variables as one
Bernoulli RFS.

3. We propose a flexible algorithm relying on Bayesian
statistical inference, which accomplishes the devices detection
(or spectrum sensing) and, at the same time, acquires two
dynamical LSI. To address the MDE problem, which is prob-
ably beyond the capacity of classical estimation techniques, the
designed scheme is based essentially on a sequential maximum
a posteriori (MAP) criterion. Simplified implementation of
the recursive estimation is then investigated, by resorting to
a sequential importance sampling (SIS) technique.

4. We evaluate the detection/estimation performance in the
presence of dynamical timing drift and time-dependent fading
channel. It is demonstrated via simulation that, using our new
algorithm, both two unknown LSI will be tracked accurately.
The information uncertainty, therefore, can be reduced to the
maximum, and the detection performance will be promoted.
By alleviating the inflexible requirement on coordinated timing
or pilot signaling, the proposed scheme will show the great
promise to future C-D2D communications, by facilitating the
spectrum-efficient and proximity-inspired transmissions.

The rest of the work is structured as following. In Section
II, a general system model is formulated in the context of
time drifts and non-stationary channel fading. Subsequently,
a Bayesian sequential estimation, relying on RFS, is briefly
introduced in Section III. Then, a new scheme which jointly
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estimates time-varying LSI and device state is proposed, by
presenting a flexible Bernoulli filtering scheme. In Section
IV, numerical results and performance analysis are provided.
Finally, we conclude this investigation in Section V.

II. SYSTEM MODEL

In this paper, we consider a distributed D2D communication
network, which employs dynamic spectrum access. The main
motivations will be two aspects. First, a cluster-header is
usually resource-demanding and becomes the network bottle-
neck in terms of energy and longevity [2], [33]. Second, a
centralized control relies on frequent information exchanges,
which becomes even impractical in adverse environments.

In C-D2D, the device discovery, or spectrum sensing, share
the same problem formulation, as illustrated in Fig. 1-(a).
For spectrum sensing, a PU device will occupy a frequency
band, while the SU manages to identify whether this band
is occupied and utilizes a DSS strategy to avoid interference.
If the band is unoccupied, a SU will access and talk with
another proximity device; otherwise, it will sense another
band [21], [24]. For direct device detection, a UE will sense
the specific channel to find one potential device in proximity
for data transmission. This process is also blind, in the case of
out-of-coverage D2D scenario, as in spectrum sensing. More
importantly, except for the similar objective, the unknown LSI
involved in above two processes are almost the same.

(1) Due to the lack of centralized coordination, the timing
information among two unassociated devices will be unavail-
able. To this end, as illustrated in Fig. 1-(b), a detection slot
may be deviated from the emission slot of another device.
Thus, the statistical likelihood of decision variable will become
unknown and the detection performance will be deteriorated
remarkably, as a decision threshold is associated with with
varying timing drifts.

(2) Meanwhile, given dynamical wireless environments (e.g.
aroused by device mobility), the channel gain for a particular
frequency will be time-dependent, by introducing random
fluctuations in received signals. Combined with the timing
drifts, the resulting serious information uncertainty poses
formidable challenges to accurate device detection/discovery
in asynchronous C-D2D scenarios.

A. Dynamic State-Space Model
For the device detection in C-D2D communications, a new

dynamical system model is established, i.e.,

sn = S(sn−1), (1)
Mn = T (Mn−1, un), (2)
αn = H(αn−1), (3)

zn = Z(tn, αn, sn, {wn,m}Mm=1). (4)

Here, Eqs. (1)-(3) are referred as to dynamic equations,
which respectively describe the stochastic transitions (from
discrete time n − 1 to time n) of unknown states, i.e., the
existence state sn, the discrete timing drift Mn and the fading
gain αn. Eq. (4) is the measurement equation, which specifies
the coupling relationship between unknown states (Mn,αn)
and the observation zn at time n.

B. Dynamics of PU States

The first stochastic function S(·) : Z1 7→ Z1 specifies
the dynamical behavior of device states at the nth time.
To be specific, sn=1 indicates the existence of an active
device, while sn=0 represents the absence of active device.
Here, it is modeled as one 1st-order Markov process, i.e.
sn ∈ S , {0, 1} [34], [35]. Accordingly, its transitional
probability matrix (TPM) is given by:

P =

[
1− pb pb
1− ps ps

]
, (5)

where ps denotes the survival probability, i.e., the probability
of a PU stays in an active state S1 and also in S1 at the previ-
ous slot and the current slot, i.e., ps := Pr{sn+1 = 1|sn = 1}.
pb is the birth probability, i.e., the probability a PU keeps
inactive state in S0 at the previous slot and switches to S1 at
the current slot n, pb := Pr{sn+1 = 1|sn = 0}.

Given the prior TPM, the inexplicit dynamic function
S(sn−1) will be determined via:

Pr{S(sn−1) = sn} = Pr{sn−1|sn}, sn ∈ S. (6)

C. Dynamics of Channel Fading

The dynamical function H(·) : R1 7→ R1 characterizes
the transition of channel fading αn ∈ A (A ⊂ R1). Note
that, here we focus on the fading gain (as required by the
non-coherent observation and the mode selection application
when roughly evaluating SNRs), which is modeled as one
discrete-state Markov chain (DSMC) [36]–[38]. Different from
the other auto-regressive (AR) model, the stochastic dynamic
function H(αn−1) will be determined by a group of transi-
tional probabilities, i.e.,

Pr{H(αn−1) = αn} = Πk→k′ , αn−1, αn ∈ A.

Here, each transitional term Πk→k′ defines the probability
of a fading state αn, switching from the state k at time index
(n′ − 1) to the state k′ at time index n′, i.e.,

Πk→k′ , Pr (αn′ = Ak′ |αn′−1 = Ak) . (7)

For the slowly evolving fading, the transitional time is
denoted as n′ = bn/Lc [24], [36], where L is the static
length in which the fading gain αn will remain unchanged
temporarily. Taking the Rayleigh fading of |A| = K states for
example, i.e. f(αn) = αn

σ2
α
×exp(− α2

n

2σ2
α

), Πi→j will be derived
via:

Πk→k′ , Pr ({αn′ ∈ [vk′ , vk′+1)|αn′ ∈ [vk, vk+1)} ,

=
1

πk

∫ vk′+1

vk′

∫ vk+1

vk

f(αn′−1, αn′)dαn′−1dαn′ , (8)

where f(αn′−1, αn′) is the bivariate Rayleigh joint prob-
ability density function (PDF) [39], and 0 ≤ k, k′ ≤
|A| − 1. The partitioning bounds vk will divide chan-
nel gain into K non-overlapped regions. Using an equi-
probable partition rule, i.e. with K equivalent steady
probabilities πk =

∫ vk+1

vk
f(αn)dαn = 1/K, we have

vk =
[
−2σ2

α × ln(1− k/K)
]1/2

, and Ak =
∫ vk+1

vk
αn ·
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f(αn)dαn [36], [37]. Here, the first-order DSMC is used,
which is sufficient to characterize slow-varying fading chan-
nels [24], [36]. Thus, the fading states are related only
with its immediate neighborhood states, i.e. Θk→k′ = 0 for
|k − k′| > 1. Accordingly, the TPM of fading channels,
denoted by ΠΠΠK×K = {Πk→k′}, k, k′ ∈ {0, 1, · · · ,K − 1}, is
expressed as Eq. (9).

D. Dynamic of timing deviations

We consider two different types of timing drifts.
(1) Case 1: Uncorrelated drifting In the first case, the

transmission interval of different slots is independent of each
other, i.e., E{(tn − tn−1) · (tn−1 − tn−2)} = 0. Given the
detection slot Tf and the sampling frequency fs, there contain
M = bTf/fs] samples in each slot. As far as discrete samples
are concerned, the deviated samples Mn aroused by timing
drifts will be ranged in M , [0,M − 1], and accordingly, in
each slot there contains only (M −Mn) informative samples.

In order to determine the statistical distribution of Mn,
assume the interval between two transmissions follow the iden-
tically and independently (i.i.d) exponential distribution E (λ),
i.e. Pr{tn− tn−1} ∼ λ ·exp{−λ(tn− tn−1)}. Given the initial
condition t0=0 and each emission interval V (n) , tn− tn−1,
the nth transmission time will be tn =

∑n
l=1 V (l), and the

resulting deviation t∆(n) is:

t∆(n) = mod
[∑n

l=1
V (l), Tf

]
∈ (0, Tf ], (10)

where mod [a, b] gives the modulo operation on a with regards
to b. For the discrete samples, a similar relation holds, i.e.,

Mn = mod
[∑n

l=1
V∆(l),M

]
∈M, (11a)

V∆(n) = b(tn − tn−1)/Tfc, (11b)

and the i.i.d random variable V∆(n) is also exponentially
distributed, i.e. V∆(n) ∼ E(λ∆), with λ∆ = bλ/Tfc. Moving
on, we obtain the following equivalent relation, i.e.,

Mn = mod
{∑n

l=1
mod [V∆(l),M ] ,M

}
,

= mod
[∑n

l=1
Yl,M

]
, Yl ∈M. (12)

It is noted that Yl , mod [V∆(l),M ] is also an i.i.d
random variable, with a discrete PDF specified by a group
of probability mass {wm} (m ∈M), i.e.,

p(Yn) =
M−1∑
m=0

wm × δ(Yn −m), (13)

wm =
∞∑
k=0

λ∆ × exp[−λ∆(m+ kM)]. (14)
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Fig. 2. The distribution of random timing deviations in the case of
uncorrelated emission intervals. Each transmission interval is i.i.d distributed
according to the negative exponential density of λd = 10. The sample length
is M = 200.

For the above modulo operation, the central limits theorem
(CLT) for modulo 1 will be directly applied [40]. I.e., for the
i.i.d variable Yn ∈ [0,M − 1] the modulo on the summation
of Yn will converge weakly to a uniform distribution, i.e.,

mod
[∑n

l=1
Yl,M

]
n→∞−→ U (0,M), (15)

subject to the condition

lim
n→∞

p(Y1)p(Y2) · · · p(Yn) = 0.

We then show that, for the above considered case, the term
∆n , p(Y1)p(Y2) · · · p(Yn) satisfies

∆n =

n∏
l=0

M−1∑
m=1

∞∑
k=1

λ∆ × exp{−λ∆[m+ kM ]},

<

n∏
l=0

M−1∑
m=1

λ∆ × exp{−λ∆ ·m},

<
n∏
l=0

λ∆ × exp{−λ∆} = λn∆ × exp(−nλ∆)
n→∞−→ 0.

Thus, relying on the modulo-CLT, the deviated samples
Mn in uncorrelated cases will be distributed according to
U (0,M), as further verified by Fig. 2. So, the transitional
function T (tn−1) will be given as:

Pr {T (tn−1|tn−1)} = Pr {T (tn−1)} = 1/M. (16)

(2) Case 2: Correlated drifting With correlated trans-
mission intervals, the emission interval of the nth time will
become correlated with the previous (n − 1)th slot, i.e.

ΠΠΠK×K =


Π0→0 Π0→1 0 0 · · · 0 0 0
Π1→0 Π1→1 Π1→2 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · Π(K−2)→(K−3) Π(K−2)→(K−2) Π(K−2)→(K−1)

0 0 0 0 · · · 0 Π(K−1)→(K−2) Π(K−1)→(K−1)

 . (9)
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E{(tn − tn−1)(tn−1 − tn−2)} 6= 0. In this case, the statis-
tical distribution of timing drifts will be hardly derived, and
alternatively, we use a general Gaussian model to describe the
stochastic procedure, i.e.,

tn = tn−1 + τn,

where the driven term τn is assumed to follow an i.i.d Gaussian
process [41], with the zero mean and the variance σ2

τ . It is
found that, for the discrete samples, the samples deviation Mn

will be characterized by:

Mn = Mn−1 + ∆n, (17)

where the discrete driven term ∆n accordingly follows a
discrete Gaussian process Nd(0, σ

2
∆).

It should be notworthy that, as far as the real timing tn is
concerned, the resulting deviation Mn will be always positive.
For the convenience of analysis, yet we will consider the
discrete deviation Mn is equivalently ranged in [−M/2,M/2].
That is, a negative Mn accounts for the advanced drift, i.e.,
the Mn deviated samples fall into the previous (n− 1)th slot;
whilst a positive Mn indicates the delayed drifting and Mn

samples fall to the next (n + 1)th slot. Of course, the other
equivalent formulation Mn ∈ [−M,M ] can be also applicable,
and the designed algorithm is independent of specific prior
information. As such, we have:

Pr {Mn|Mn−1} (18)

=

{
1
/√

2πσ2
∆ · exp[−(Mn −Mn−1)2/2σ2

∆], case 1,

U (−M/2,M/2], case 2.

E. Observation

The observation zn ∈ Z(Z ⊂ R1) at the nth detection slot
will be calculated via:

zn =
M∑
m=1

{
αncn(m)δ(sn − 1)GMn

(m) + wn(m)
}2

, (19)

=



M∑
m=1

{
αncn(m)GMn

(m) + wn(m)
}2

, sn = 1,

M∑
m=1

w2
n(m), sn = 0.

Here, δ(x) denotes a Dirichlet function, which indicates the
existence of the target signal; GMn

(m) (m = 1, 2, · · · ,M)
accounts for a window function imposed on target signals,
which is aroused by timing drifts Mn. H0 and H1 correspond
to two hypotheses, respectively, i.e., the absence and presence
of target signals cn(m) = bn(m) × p(m), where bn(m)
represent the unknown information symbols, and p(m) is
the pulse-shaping response. For simplicity, the binary phase
shift keying (BPSK) signal is considered, i.e. bn(m) ∈ B =
{
√
Es,−

√
Es} with EB{b2n(m)} = Es. The noise samples

wn(m) ∈ R1 are assumed to be zero-mean additive white
Gaussian noise (AWGN) which is independent of other hidden
states, i.e., wn(m) ∼ N (0, σ2

w). When the non-coherent
observations are concerned [24], [25], the generalization of the

model and subsequent algorithm to other unknown modulated
signals will be straightforward.

Note that, when Mn=0 we have GMn(m) = 1 for m =
1, · · · ,M . For the positive Mn > 0, the window function
GMn

(m) will be specified by:

GMn(m) =

{
0, 1 ≤ m ≤Mn, (20a)
1, Mn + 1 6 m ≤M, (20b)

and for a negative Mn < 0, we have

GMn
(m) =

{
1, 1 ≤ m ≤M − |Mn|, (21a)
0, M − |Mn|+ 1 ≤ m ≤M. (21b)

Considering a case Mn > 0, two pieces of summed energy
will be calculated respectively, i.e.,

zn(1) =

Mn∑
m=1

w2
n(m), zn(2) =

M∑
m=Mn+1

[αncn(m)+wn(m)]2.

It is found that such two components will be independent of
each other. Given independent noise samples, the likelihood
function p{zn|αn, sn = 1,Mn} is evaluated via p{zn(1)|sn =
1,Mn} × p{zn(2)|αn, sn = 1,Mn}. Here, p{zn(1)|sn =
1,Mn} follows the central Chi-square distribution of the
degree Mn, while p{zn(2)|αn, sn = 1,Mn} follows a non-
central Chi-square density of the degree (M −Mn) with a
non-central parameter [M −Mn] · E{c2n(m)}α2

n/σ
2
w.

When both M −Mn and Mn are sufficiently large (>20),
then each component (zn(1) or zn(2)) follows the Gaussian
distributions, according to the CLT. Given different emission
status of unassociated devices (i.e. sn) as well as the related
LSI (i.e., αn and Mn), the approximated likelihood distribu-
tions will be:

ϕn(zn|sn = 0) = N {Mσ2
w, 4Mσ4

w}, (22)
ϕn(zn|αn, sn = 1,Mn) =

N {E{zn(1)|sn = 1,Mn},V{zn(1)|sn = 1,Mn}}×
N {E{zn(2)|sn = 1,Mn},V{zn(2)|sn = 1,Mn}} . (23)

where each single mean and variance terms, in the case of
sn=1, will be given by:

E{zn(1)|sn = 1,Mn > 0} = Mnσ
2
w,

V{zn(1)|sn = 1,Mn > 0} = 4Mnσ
4
w,

E{zn(2)|αn, sn = 1,Mn > 0} = 2(M −Mn)Esα
2
nσ

2
w,

V{zn(2)|αn, sn = 1,Mn > 0} = 2(M −Mn)Esα
2
nσ

2
w

+ 4(M −Mn)σ4
w.

III. ASYNCHRONOUS DEVICE DETECTION

To implement the mixed device detection and LSI es-
timation in the context of unknown timing, we adopt the
maximum a posteriori (MAP) criterion and design a stochastic
filtering scheme. Rather than relying on a fixed threshold, we
manage to exploiting fully the dynamical statistics involved
in the received signals. Our new scheme is thereby rooted
on a Bayesian rule, which is committed to estimate the joint
posterior density, i.e.,

(α̂n, ŝn, M̂n) = arg max
αn∈A,sn∈S,Mn∈M

p(α1:n, s1:n,M1:n|z1:n),

(24)
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where s1:n = {s1, s2, · · · , sn} denotes the trajectory of trans-
mission states until the nth slot, while α1:n, M1:n and z1:n

are three trajectories of fading gains, varying timing drifts and
observations, respectively. It is noteworthy that, relying on a
concept of THT, the Neyman-Pearson (NP) criterion becomes
inadequate to the new formulation of joint estimation [35].

A basic idea here is the recursive estimation, which exploits
the underlying dynamics of unknown states. That mean-
s, a sequential Bayesian framework, i.e., predict using the
Chapman-Kolmogorov (CK) equation and then updating with
the Bayesian rule, will be adopted. A major difficulty is
that, unlike the tracking of an established link channel, the
likelihood density will be unavailable due to the random
presence/absence of device. Therefore, the formulated MDE
problem in Eq. (24) still remains a substantial challenge.

In the section, we suggest a new formulation to charac-
terize the stochastic presence of device and the dynamics
of its related LSI (i.e. the varying timing drift and channel
fading). Then, for the specific application we further design a
sequential estimation scheme.

A. Random Finite Set

We formulate a Bernoulli RFS (BRFS) FFFn to characterize
asynchronous device detection with unknown LSI. To be
specific, the BRFS cardinality of time n, which is denoted
by dn = |FFFn| (d ∈ N0 = {0, 1, · · · }) and follows a Bernoulli
distribution κ(d) = Pr{|FFFn| = d} [30], [31], [42], is used
to indicate whether an device is transmitting signal or not.
Meanwhile, a compound state fn , {Mn, αn} ∈ A ×M ⊂
R2, related with an unassociated device, consists of unknown
timing drifts and fading gains, which evolves with time. Thus,
an RFS FFFn is able to cast two-level uncertainties into one
random process, i.e., whether there are target signals and what
its related LSI is.

In following analysis, we adopt the Mahler’s approach to
define the finite set statistics (FISST) PDF of FFFn [30], i.e.,

p(FFFn = {f1, f2, · · · , fd}) = n!κ(dn) · p({f1, f2, · · · , fd}).(25)

In the context of the set integral operation
∫
p(FFFn)dFFFn

(rather than the distribution integration), p(FFFn) can be viewed
as one PDF, i.e.,

∫
p(FFFn)δFFFn = p(FFFn = ∅) + [1− p(FFFn =

∅)]×
∫
p(fn)dfn = 1. For the considered BRFS, i.e., |FFFn|=1,

the above FISST PDF p(FFFn) is rewritten to:

p(FFFn) =

{
1− qn, if FFFn = ∅, (26a)
qn × p({Mn, αn}), if FFFn = {Mn, αn}. (26b)

Note that, for the cases dn >1 we will have p(FFFn)=0. In
other words, in a Bernoulli RFS an unassociated device is
either active (e.g. with a probability of qn) or inactive (e.g.
with a probability of 1−qn) [43]. Accordingly, the cardinality
density is specified as:

κ(d) =

{
1− qn, if FFFn = ∅, (27a)
qn, if FFFn = {Mn, αn}. (27b)

B. Sequential MAP

Using the Bayesian sequential inference, the transitional
densities of unknown states as well as the likelihood on new
observation will be fully utilized. Thus, a two-stage recursive
procedure will be implemented, i.e.

pn|n−1(FFFn|y1:n−1) =∫
FFFn−1

φn|n−1(FFFn|FFFn−1)× pn−1|n−1(FFFn−1|y1:n−1)dFFFn−1,

(28)

pn|n(FFFn|yz1:n) =
ϕn(yn|FFFn)pn|n−1(FFFn|y1:n−1)∫

FFFn ϕn(yn|FFFn)pn|n−1(FFFn|y1:n−1)dFFFn
.

(29)

As mentioned, the one-step prediction of Eq. (28) mainly
utilizes the prior traditional information and a C-K equa-
tion [44]. The updating stage in Eq. (29) relies on a Bayesian
rule, by fully exploiting the real-time information carried
with the new observation. Compared to classical Bayesian
estimation methods, notable difference in the RFS inference
is that, rather than the distribution integration, the set integral
operations (i.e. δFFFn) will be used.

Recalling the previous Markov models, the transitional den-
sity of our formulated BRFS, i.e., φn|n−1(FFFn|FFFn−1), will be
characterized by also a 1st-order Markov process. Conditioned
on different feasible states at the time n-1, we have:

φn|n−1(FFFn|∅) =

{
1− pb, if FFFn = ∅, (30a)
pb · bn|n−1({Mn, αn}), else, (30b)

and

φn|n−1(FFFn|fn−1) =

{
1− ps, if FFFn = ∅, (31a)
ps · pn|n−1(fn|fn−1), else. (31b)

Here, the a priori density bn|n−1({Mn, αn}) specifies an
initial distribution for a singleton state |FFFn| = 1, if one
unassociated device that does not exist at time n-1 is appeared
at the time n, i.e. bn|n−1({Mn, αn}) = Pr{{Mn, αn}|qn−1 =
0}, as discussed shortly.

C. Bernoulli Filtering

The above sequential estimation, in the context of random
absence of target signals, remain relatively different from
classical Bayesian estimation, e.g. the Kalman filtering [37].
In sharp contrast, two coupled posterior densities need to
be estimated jointly, in order to determine the FISST PDF
pn|n(FFFn|z1:n) in Eq. (26). The first one, referred as to
the existence density, indicates whether the target signal is
contained in received samples, i.e.,

qn|n , Pr (|FFFn| = 1, sn = 1|z1:n) , (32)

The second one is used to characterize the related LSI (e.g.
unknown timing drifts and fading gains) when an unassociated
device is active at time n, which is also known as the a
posteriori spatial PDF, i.e.,

pn|n (FFFn = {Mn, αn}) , Pr(αn = Hk,j ,Mn). (33)
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Solving the above RFS inference process will be premised
on a similar two-stage process. In the first stage, the above
two densities will be predicted relying on the prior transitional
densities as well as the posterior densities of previous time
n − 1. In the second stage, such two predicted densities will
be updated by further exploiting the current observation.

1) Prediction Stage: With the help of C-K equation, the 1st-
order prediction process will be realized. Given the posterior
density of time n−1, i.e. qn−1|n−1 and pn−1|n−1(fn), two pre-
dicted distributions of the time n, i.e., qn|n−1 and pn|n−1(fn),
will be derived respectively from Eqs. (34) and (35): (see the
bottom of the next Page):

qn|n−1 = pb × (1− qn−1|n−1) + ps × qn−1|n−1. (34)

The similar derivation procedure of two above equations
may be found in some previous works [26], [35], [43].
The expressions of such two densities are relatively easy to
follow. Each predicated density will be contributed by two
complimentary terms, i.e., the component from a sustained
active device (i.e. which is related with qn−1|n−1 and known
as the survival component), and the other component from the
newly birthed device (i.e. which is related with 1− qn−1|n−1

and refereed as to the birth component).
2) Update Stage: Relying on the new observation zn, the

predicted densities attained by the first-stage will be updated.
The updated densities, by incorporating the innovation infor-
mation, will be more accurate, which are given by Eq. (36)
(at the bottom of the page) and

pn|n({Mn, αn})

=
rn(zn|{Mn, αn})× pn|n−1({Mn, αn})∫

A,M rn(zn|{Mn, αn})× pn|n−1({Mn, αn})dαndMn
,

(37)

where the likelihood ratio is defined as:

rn(zn|{Mn, αn}) = ϕn(zn|αn, sn = 1,Mn)/ϕn(zn|sn = 0).
(38)

With the derived two posterior densities, the unassociated
device will be detected via the MAP criterion, i.e.,

ŝn =

{
1, if qn|n > γ, (39a)
0, if qn|n ≤ γ, (39b)

where γ will be configured to 1/2 as in a Bayesian rule.
Meanwhile, the unknown LSI will be estimated via:

{M̂n, α̂n} = arg max
Mn∈M,αn∈A

pn|n({Mn, αn}). (40)

3) Related Densities: In the analysis, the prior transitional
density of dynamical timing drifts will be determined via E-
q. (41), which will be dependent of various emission intervals.

pn|n−1({αn,Mn}|{αn−1,Mn−1})
= Pr(α′n = Ak′ |αn′−1 = Ak)× Pr(Mn|Mn†) (41)

=

{
Πk→k′ ·N (Mn −Mn† ; 0, σ2

∆), Type 1,

Πk→k′ ·U (Mn −Mn† ; [−M/2,M/2]) , Type 2.

Notice that, n† denotes the previous time slot of unassoci-
ated emission. It is noteworthy that this previous emission slot
n† may be smaller than n−1. I.e. such an emission-dependent
dynamical process will be different from that of fading gain,
which is closely related with PU’s emission states. In other
words, the timing drift Mn is not necessary to estimate in the
case of sn = 0 and, in contrast, the fading channel needs to
be estimated even if sn=0. To be specific, if an unassociated
device is active at time n − 1, then the estimated fading
state is α̂n−1 = α̂n−2 in the case of mod(n − 1, L) > 0
and sn−1 = 0; otherwise, it will be estimated via the prior
transitional density α̂n−1 = arg max

αn−1∈A
p(αn−1|α̂n−2) in the

case of mod(n− 1, L) = 0 and sn−1 = 0.
It is seen from the predict-update procedure that the pro-

posed scheme can effectively address the aforementioned like-
lihood disappearance and the mutual interruption problems.
First, the combination of birth and survival components, see
Eq. (34) and (35), as the expectation on the corresponding
densities, would cope with the influence from the existence
uncertainty (sn = 1 or sn = 0). Second, the mutual inter-
ruption is fully embodied by two coupled densities, i.e., the
existence density and the spatial density, which can be now
estimated jointly.

As mentioned, the birth density will be of importance to
sequential estimation, which should be properly designed. In
this work, the birth density is specified as in Eq. (42), given
the independent timing drift and channel fading, i.e.,

bn|n−1({Mn, αn}) = bn|n−1(αn)× bn|n−1(Mn). (42)

For the fading gain, a birth sub-density is assigned as:

bn|n−1(αn) = Pr{αn|sn−1 = 0}, (43)

=

∫
A
pn|n−1(αn|α̃n−1) · bn−1(α̃n−1)dα̃n−1,

where the term α̃n−1 is viewed as an intermediate state, which
is derived from the estimated fading state of previous time

pn|n−1({Mn, αn}) =
pb · (1− qn−1|n−1)× bn|n−1(Mn, αn)

qn|n−1

+
ps · qn−1|n−1 ×

∫
A,M pn|n−1({Mn, αn}|{Mn−1, αn−1}) · pn−1|n−1({Mn, αn})dαndMn

qn|n−1
. (35)

qn|n =
qn|n−1 ×

∫
A,M rn(zn|{Mn, αn}) · pn|n−1({Mn, αn})dαndMn

1− qn|n−1 + qn|n−1 ×
∫
A,M rn(zn|{Mn, αn}) · pn|n−1({Mn, αn})dαndMn

. (36)
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n− 1. Given the estimation state α̂n−1, we have:

bn−1(α̃n−1 = Hj) =

{
1/3, α̂n−1 = Hi & |i− j| ≤ 1,

0, α̂n−1 = Hi & |i− j| > 1.

For the timing drift, its birth sub-density is specified by:

bn|n−1(Mn) = Pr(Mn|z1:n−1),

' pn|n−1(Mn|M̂n†). (44)

D. Implementations

Although the recursive propagation of posterior densities
provides a theoretic framework for the BRFS estimation, the
involved computation complexity will be very high. I.e., when
the sample size M is large, then the state space of timing drifts
will be enlarged. Considering the fading gains, the unknown
state space will become K×M dimensional, rendering a direct
computation/integration infeasible. To alleviate the difficulty,
particle filtering (PF) is used to implement the Bayesian
inference via a simulated Monte-Carlo approach [45], relying
on the sequential importance sampling (SIS).

1) PF: Using the PF, a group of discrete particles x(i)
n with

evolving probability mass (or weights) w(i)
n (i = 1, 2, · · · , I),

which are simulated from a proposal density, i.e., x(i)
n ∼

π(x(i)
n |z1:n), are employed to approximate complex integration

via numerical summation [45]. That is, the involved density
pn(xn) will be computed via:

pn(xn) =

I−1∑
i=0

w(i)
n × δ(x− x(i)

n ), (45)

where the compound state is xn , {Mn, αn}. Thus, the
essence of PF is to design a proper proposal density, from
which we can (1) sample I discrete particles, and (2) update
the particle weights recursively. In general, given a proposal
density π

(
x(i)
n |z1:n

)
, the particle weighs w(i)

n are updated by:

w(i)
n = w

(i)
n−1 ×

p
(
zn|x(i)

n

)
· p
(

x(i)
n |x(i)

n−1

)
π
(

x(i)
n |x1:n−1, z1:n

) . (46)

2) Bernoulli PF: As far as Bernoulli PF (BPF) is con-
cerned, we need to approximate the predicted spatial density
via p̂n|n−1(x) '

∑I−1
i=0 w

(i)
n|n−1 × δ

(
x− x(i)

n|n−1

)
. Given

two complementary components (i.e., survival and birth), a
group of discrete particles are sampled from a piece-wise
distribution [26], [43], i.e.,

x(i)
n|n−1 ∼

{
ξn

(
xn|n−1|x

(i)
n−1|n−1, z1:n−1

)
, i = 1, · · · , J, (47a)

βn(xn|n−1|z1:n−1), i = J + 1, · · · , J +B. (47b)

where the first J particles will approximate the survival term,
whilst the later B particles are used to evaluate the birth term.
Then, the associative weights evolve according to:

w
(i)
n|n−1 = (48)



ps · qn−1|n−1

qn|n−1
·

pn

(
x(i)
n|n−1|x

(i)
n−1|n−1

)
ξn

(
xn|n−1|x

(i)
n−1|n−1, z1:n−1

) · w(i)
n−1|n−1,

i = 1, 2, · · · , J,

pb × (1− qn−1|n−1)

qn|n−1
×

bn|n−1

(
x(i)
n|n−1

)
B × βn(xn|n−1|z1:n−1)

,

i = J + 1, · · · , J +B.

Usually, in order to eliminate particles with extremely small
weights, a re-sample process will be adopted if necessary [46].

3) Proposal survival-density: The proposal density, related
with the survival component, will be determined recursively.
I.e., with the predict particles and weights of the previous time
n− 2, the posterior density of time n− 1 will be approached
after updating J + B particle weights. Thus, J new particles
can be simulated from the updated posterior density at time
n− 1, i.e.,

x(i)
n−1|n−1 ∼

J+B∑
i=1

δ
(

x− x(i)
n−1|n−2

)
×

ϕn

(
zn−1|x(i)

n−1|n−2

)
· w(i)

n−1|n−2, (49)

These J particles x(i)
n−1|n−1 (i = 1, · · · , J), as survival

particles, will be retained for the subsequent time n.
4) Proposal birth-density: The proposal birth density will

be assigned directly as the a priori transitional density, i.e.,

x(i)
n|n−1 ∼ bn|n−1(αn)× bn|n−1(Mn|z1:n−1). (50)

Premised on a PF approach, the predicted spatial density
pn|n−1(x), which involves the K×M dimensional space, will
be approximated via:∫

A,M
rn(zn|{Mn, αn}) · pn|n−1({Mn, αn})dMndαn,

'
J+B∑
i=1

rn

(
zn|x(i)

n|n−1

)
× w(i)

n|n−1. (51)

5) Practical Considerations: As the fading channel αn
will keep temporarily invariant within L successive slots,
the observations within such a static length (in the case
of qn|n > γ) can be accumulated, which further improves
the degree of likelihood density and thereby promotes the
estimation performance. Besides, in order to reduce the popu-
lation of particles when sampling from a K×M dimensional
space, I particles are employed to respectively simulate fading
states and timing drifts, and then I compound particles of 2-
dimensional is formulated by binding them together.

An schematic flow of the proposed algorithm is summarized
in Algorithm. 1. (1) Provided the current observation zn, the
posterior existence probability qn|n and the spatial density
pn|n(Mn, αn) are estimated, by using a two-stage (prediction
and update) procedure; (2) in the case of qn|n > γ, the obser-
vation will be accumulated to further promote the accuracy of
likelihood; (3) the unknown device as well as its associated
LSI will be estimated by maximizing the posterior densities.

From the above elaboration, the involved multiplication
of our proposed scheme will be measured by O(M + Iϑ).
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(1) O(M) multiplications are required when constructing
the summed-energy observation. (2) In subsequent BPF, the
required multiplications are basically proportional to the size
of used particles I . Here, ϑ denotes the required multiplica-
tions when processing each particles, including the transitional
operation and likelihood evaluation.

As demonstrated by Eq. (46) and (48), the main computation
of our algorithm comes from the evaluation of Gaussian likeli-
hood function for I independent particles x

(i)
n , accompanying

M power operations. We assume a configuration of M=200
and I=100, and use a single core of an ARM Cortex A9 (which
is not a cutting-edge, as far as the next-generation smart-
phone is concerned) to implement the involved computation.
We found the algorithm will take less than 0.1 millisecond-
s (i.e. the real-time float-point computation). Reducing the
sample size M and particle size I directly may lead to the
simplified complexity, yet there involves a practical compro-
mise between performance and complexity1. For the typical
sensing-transmission frame length of 20∼100 milliseconds,
therefore, the time-delay will be basically negligible. Also, if
further considering the resource-efficient automatic generation
of look-up-table [48], the power consumption is not really a
big cost when implementing the algorithm locally (around 10
times per second in detection stage).

IV. NUMERICAL SIMULATIONS

In the section, the performance of the proposed algorithm
will be evaluated via numerical simulations. In order to mea-
sure the detection performance, the right detection ratio PD is
adopted as a performance metric as in refs. [24], [35], which
takes both the miss detection probability Pm and the false
alarm Pf into considerations and, therefore, is more suitable
to the designed Bayesian scheme.

PD = 1− p(H1)Pm − p(H0)Pf . (52)

For time-dependent fading channels, the mean square error
(MSE) of estimations will be evaluated, i.e.

MSEα ,
1

N
× E

{∑N

n=1
|α̂n − αn|2/|αn|2

}
. (53)

For the other important LSI, i.e. the varying timing drifts,
the MSE will be calculated, i.e.

MSEt ,
1

N
× E

{∑N

n=1
|M̂n −Mn|2/|Mn|2

}
. (54)

In the first simulation, the representative states of fading
channel are K=7 and the variance of Rayleigh fading is
σ2
α = 0.5; the static length is L=20. The sample size is
M=100. The birth probability is pb=0.8 and the survival
probability is ps=0.2. The total particle size is I =200, i.e.

1For the sample size M , the tradeoff between sensing accuracy and
transmission throughput has been investigated by Liang et.al. [47]. Here,
we only refer to a compromise between detection accuracy and complexity
computation. Notice that, for the concerned device detection with unknown
timing drift, a larger sample size M was supposed to increase the accuracy
of likelihood density and the detection performance. As shown by subsequent
analysis, the increased uncertainty in timing drift, i.e. Mn ∈ [−M/2,M/2],
would degrade the detection. So, there involves another interesting compro-
mise in configuring M .

Algorithm 1 Asynchronous device detections for C-D2D
Input: Observation z1:n, n = 1, · · · , N − 1,

Initial density q1|1, p1|1({M1, α1}),
Feasible fading state A and its TPM ΠΠΠK×K ,
Feasible timing transitional model Mn = T (Mn−1).

Output: Posterior densities qn|n, pn|n({Mn, αn}),
Existence state sn and LSI, i.e. {Mn, αn}.

? Initialize the particles
{

x(i)
1 , w

(i)
1

}
, I = 1, · · · , J +B.

for n→ 1 to N do
? Calculate the predicted density qn|n−1 via Eq. (34).
? Simulate (J +B) particles x(i)

n|n−1 from Eq. (47).

? Calculate the predicted particle weights w(i)
n|n−1, and

then normalize such particle weights.
? Evaluate the likelihood density ϕn(zn|{Mn, αn}, sn).
? Update the particles and their weights, and obtain
{x(i)
n|n, w

(i)
n|n}.

? Calculate the existence density q̂n|n via Eq. (36), and
estimate the active state ŝn via Eq. (39).
? Approximate the spatial density p̂n|n({Mn, αn}) via
Eqs. (35) and (51), and estimate unknown LSI {Mn, αn}
via Eq. (40).
if q̂n|n > γ and mod(n,L) > 0 then
� Accumulate the observations in [bn/Lc × L+ 1, n];
� Re-calculate the likelihood using the accumulated
observations, and re-estimate fading state α̂n.

end if
? Output the estimated state ŝn and the related LSI
{M̂n, α̂n}.

end for

J = B = 100. We find from Fig. 3 (a)-Left, in the case of
correlated transmission intervals (i.e., Type-1), the dynamical
timing drifts will be varied in a correlated manner, as in Eq.
(15). Using the proposed scheme, the unknown drift can be
effectively tracked. From the MSE performance in Fig. (a)-
Right, the estimation of unknown timing is accurate relatively.
Relying on the numerical results, the estimation error, i.e.
M̂n − Mn, will be distributed basically according to one
Laplace density, i.e. L (0, 3.3). Despite the maximum devi-
ation of M/2 (i.e. |Mn| ≤50 when M=100), the estimation
error will never excess 15, and the mean MSE is only about
3.076 when SNR is 14dB. In Fig. 3-(b), the same observation
will be made to the uncorrelated transmission intervals (i.e.
Type-2), yet with the increased estimation errors, due to the
completely random timing drifts (see Fig. 3-(b)-Left).

A. Correlated timing drifts

We now focus on the estimation performance in the presence
of correlated timing drifts. As noted from Fig. 4, the sample
size M will affect the estimation MSE. To be specific, a large
sample size M will lead to the increased estimation accuracy.
A rough detection gain of 2dB will be attained by a smaller
sample M=100, compared with the case of M=200. This is
because we consider the worst situation in our analysis, where
the maximum deviation samples is proportional to the sample
size M , i.e. max(|Mn|) = M/2. Therefore, the larger the
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Fig. 3. (a)-Left: The estimation performance of dynamical timing drifts in
the context of correlated emission intervals. (a)-Right The estimation errors
of timing drifts. In the simulation, the maximum timing drift is M=100,
and the SNR is configured to 12dB. The estimation errors may follow
a Laplace distribution L (0, 3.3). (b)-Left The estimation performance of
dynamic timing drift in the context of correlated emission intervals. (b)-Right
The estimation error of the timing drifts, which follows a Gaussian distribution
N (0, 4.32).

sample size M , the larger the uncertainty of varying timing is.
Besides, given the sample size M , the estimation performance
will be improved by an increased static length L.

The tracking performance of varying fading gains is shown
in Fig. 5. We can see that, with the increasing of a static fading
length L, the MSE performance of various sample sizes (both
M=100 and M=200) will be promoted significantly. This is
easy to follow. The larger the static length L, the more observa-
tions (within a static length) will be accumulated, resulting in
the more accurate likelihood information. However, it is noted
that, when the sample size is M=200, the MSE of estimated
fading gain will be slightly inferior to that of M=100 (when
L = 20). Despite more samples of M=200 and the increased
accuracy of likelihood, the maximum timing deviations will
also be increased to 100 (e.g. from 50 in the case of M=100).
As a consequence, the improved likelihood density would
be compromised by the increased timing uncertainty. The
theoretical analysis on proper configuration of sample size M
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Fig. 4. MSE performance of dynamic timing drifts in the context of correlated
transmission intervals.
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Fig. 5. MSE performance of time-dependent fading channels in the context
of correlated transmission intervals.

remains still an open issue for future studies.
The detection probability is given by Fig. 6. First, we can

see that increasing the static fading length L can enhance
the accuracy of device detection, in the presence of unknown
timing and channel fading. Taking a sample size M=200
for example, a rough gain of 5dB will be attained if L=50,
compared to another case of L=20. In contrast to a common
sense, for a small static fading length (e.g. L=20), increasing
the sample size M cannot always achieve the detection gains,
in the situation of asynchronous D2D device detection. As
mentioned, only the improvement on the likelihood accuracy
surpasses the enlargement of timing uncertainty, can the de-
tection performance be improved, as the case of large static
length L=50.

B. Uncorrelated timing drifts

Next, we will study the estimation/detection performance
with uncorrelated timing drifts. It is seen from Fig. 7 that,
with the completely random timing drifts, the estimation MSE
will converge to a stable value, after the SNR surpassing 12dB.
For example, when M =100 and L=50 the mean MSE will be
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Fig. 7. MSE performance of dynamic timing drifts in the context of
uncorrelated transmission intervals.

8.25 (samples) in high SNR regions (e.g. SNR>10dB). This
is relatively different from the numerical results of correlated
timing drifts. Meanwhile, we find that the estimation MSE of
uncorrelated timing drifts will be higher than that of correlated
drifts. Taking M=100 and L=50 for example, the mean MSE
for uncorrelated drifts is about 8.22 samples when SNR=16dB,
while the mean MSE under correlated drifts will only be 2.16
samples. This is mainly attributed to the underlying dynamics
of correlated drifts, which may be further utilized to improve
the estimation performance.

When it comes to varying fading channels, the estimation
accuracy will be comparable to that of the correlated timing
drifts. In the high SNR region, the slightly more accurate
estimation will be obtained in the case of correlated timing
drifts. Taking SNR=12dB for example, the MSE of uncorre-
lated drifts is about 0.005 when M=200 and L=50. While for
the correlated drifts, the MSE becomes 0.0045.

The performance of device detection under uncorrelated
timing drifts are shown by Fig. 9. Taking M=200 and L=50,
when SNR is larger than 12dB, the right detection probability
will be 1. We will see that, in this case, the residual errors of
unknown timing drift is about 15 samples, while the relative
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of uncorrelated transmission intervals.

 

 

-10 -5 0 5 10 15
0.75

0.8

0.85

0.9

0.95

1

SNR /dB

P
D

 

L=100, M=20

L=100, M=50
L=200, M=20

L=200, M=50

Fig. 9. Device detection performance in the context of uncorrelated
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error of fading channels will be 0.005. By effectively sup-
pressing the involved information uncertainties, the proposed
scheme is applicable to asynchronous D2D device detection,
even with varying fading gain and unknown timing drifts.

C. Comparative analysis

We firstly compare the detection performance of different
timing drifts. In the simulations, the static length is L=20 and
the sample size is M=100. As expected, the detection accuracy
in the context of correlated timing drifts will be relatively
superior to that of uncorrelated drifts. Notice from Fig. 10-
a that, in high SNRs region (e.g. SNR>8dB), the detection
performance of two different timing drifts will be comparable.

Although the aforementioned fixed-threshold technique
would be feasible, here we focus on the comparison of another
method in the scenario of asynchronous detection, which,
to even things up, is similarly based on a Bayesian rule
(rather than another Neyman-Pearson criterion) by exploiting
the available partial statistic information. Since there is no
coordination from BS, we have to assume that only limited
information on both unknown timing drift and fading gain



1536-1276 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2018.2796553, IEEE
Transactions on Wireless Communications

12

 

 

-5 0 5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

SNR /dB

P
D

 

 

Proposed: correlated

Expectation: correlated, M/4

Expectation: correlated, 0
Proposed: uncorrelated

Expectation: uncorrelated, M/4

Expectation: uncorrelated, 0

(a)

 

-2 0 2 4 6 8 10

2.9

3

3.1

3.2

3.3

3.4

Sensing SNR /dB

A
cc

um
ul

at
ed

 C
ap

ac
ity

 (
bi

ts
/S

ec
/H

z)

 

 

Proposed scheme

Expectation-based scheme

(b)

Fig. 10. (a) Device detection performance of the designed scheme vs the expectation likelihood-based methods. (b) The accumulated capacity for shared
accessing scenario of different detection schemes.

can be available. In this case, the likelihood-based tech-
nique can be utilized. To be specific, when the conditional
likelihood p(zn|sn = 1,EM{Mn},EA{αn}) is larger than
p(zn|sn = 0), we will have ŝn=1, and otherwise, ŝn=0. Since
the timing drifts Mn will be distributed in [−M/2,M/2], one
simple and direct solution is to assume EM{Mn} = 0. I.e.,
the detector will be totally unconscious of real-time drifts.
From the simulation result, with the two-level information
uncertainty aroused by varying fading and the timing drifts,
the detection performance will be significantly deteriorated.
For example, the right detection probability PD will be 0.5,
no matter what the SNR is. Similar results can be observed
when the uncorrelated drifts are concerned.

In fact, more partial statistic information (i.e. expectation)
on unknown timing drifts can be further exploited. For exam-
ple, we note from simulation results that, when the expectation
on timing deviations is configured to a half of the sample size
(or maximum deviation), i.e. EM{Mn} = M/4, the detection
performance of likelihood-based methods will be improved,
compared with the simple assumption EM{Mn} = 0. Even
so, the partial information inspired detection scheme still
achieves the less attractive performance, as in Fig. 10-a. In
comparison, by tracking two unknown LSI and suppressing
the information uncertainty, a rough gain about 5∼6dB can
be obtained by our new scheme.

Finally, we investigated the accumulated capacity in shared
access scenarios. We consider two local links, one conducts
primary transmissions and the other one (i.e. secondary link)
manages to share the spectrum via a listen-before-talk strategy.
Due to the false detection (with the probability p(H1|H0)),
the capacity of primary user will be degraded. The missed
detection (with the probability p(H0|H1)), on the other hand,
will affect the shared capacity of secondary transmissions.
Without losing generality, we assume the normalized capacity
of primary user with no interference from shared transmission
is Cp, and the capacity when the missed detection occurs will
be decreased to C ′p. The shared capacity of secondary user (i.e.
conducting proximity-based transmission) is Cs. It is easily

found the accumulated capacity is:

Ca =Cp · p(H1|H1)p(H1) + C ′p · [1− p(H1|H1)]p(H1)

+ Cs · [1− P (H1|H0)]p(H0).

We then evaluated the promotion of accumulated capacity
Ca by our proposed scheme. In numerical analysis, we
configured L = 20, M = 100, EM{Mn} = M/4,
p(H1)=p(H0)=0.5, Cp=2.32 bit/sec/Hz (i.e. SNRP=4),
C ′p=1.32 bit/sec/Hz (i.e. SINRP=1.5), and Cs=4.39
bit/sec/Hz (i.e. SNRS=20). From Fig. 10-b, we noted the
proposed scheme can enhance the accumulated capacity
Ca of shared accessing. Taking the sensing SNR of 10dB
for example, the accumulated capacity can be improved by
7% by using the new scheme, compared with a classical
detection method (i.e. the likelihood-based detection utilizing
the expectation of unknown LSI.)

More importantly, except for promoting the detection per-
formance, the acquired LSI will be also of great significance,
for example, to underlay D2D communications [49]. To be
specific, the accurate fading gain will provide additional
information for subsequent D2D mode selection and resource
allocations. For example, consider two primary devices talk
with each other via the time division duplexing (TDD) scheme,
then the probed channel gain permits the real-time power
adaption of shared transmission to limit its interference (e.g.
with either peak or averaging interference constraint). As a
result, the uninterrupted transmission of shared user and the
harmonious coexistence between primary and secondary links
would become a reality. To this end, the additional shared
capacity can be also achieved, with the aid of our proposed
scheme and the acquired channel information. Such additional
benefits would be covered in our future studies.

V. CONCLUSIONS

In this work, we focus on the device discovery/detection
of asynchronous cognitive device-to-device communications.
Due to the distributed asynchronous nature of the system,
the task is greatly complicated by unknown timing drifts and
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fading channels. In order to achieve the reliable detection, we
design a novel deep sensing paradigm to combat destructive
effects from unknown LSI. The underlying dynamics of two
unknown states are fully concerned, and a sequential Bayesian
scheme is proposed, which acquires the varying timing drifts
and fading channels when directly performing device detec-
tion. To solve the complex MED problem, the two-stage recur-
sive estimation is implemented, and the PF-based numerical
approximation is further used to alleviate the computation
complexity. Two types of timing drifts are considered, and the
detection/estimation performance are numerically evaluated. It
is demonstrated that, by dynamically tracking unknown drifts
and fading gains, the detection performance will be improved
significantly, compared to the expectation-based likelihood
method. Our new scheme may further provide the useful
information for transmission optimisation, e.g. the mode se-
lection based on fading gains. By increasing the configuration
flexibility, this scheme will be of promise to the emerging D2D
communications, especially in adverse environments, e.g., out-
of-coverage or publicity safety scenarios.
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