
SECURE DATA SHARING AND SEARCHING

34 I EEE CLO U D CO M P U T I N G P U B L I S H ED BY T H E I EEE CO M P U T ER S O CI E T Y 2 3 2 5 - 6 0 9 5/ 1 7/$ 3 3 . 0 0 © 2 0 1 7 I EEE

 Secure Data Sharing and
Searching at the Edge of
Cloud-Assisted Internet
of Things

Muhammad Baqer Mollah and Md. Abul Kalam Azad, Jahangirnagar University
Athanasios Vasilakos, Luleå University of Technology

This article proposes an efficient data-sharing scheme that allows smart
devices to share securely data with others at the edge of cloud-assisted
Internet of Things (IoT). We also propose a secure searching scheme to
search desired data within own/shared data on storage.

he Internet of things (Iot)1 is consid-
ered as a future internet that extends
the connection of the internet to all
kinds of real-world physical smart de-
vices. A report by Cisco (www.cisco
.com/c/dam/en_us/about/ac79/docs/

innov/IoT_IBSG_0411FINAL.pdf) estimates that
by 2020 around 50 billion of such smart devices
will be connected to the Internet. By connecting
these billions of smart devices to the Internet, the
IoT will provide developed smart and autonomous
cyber-physical environments in the area of smart
grids, smart cities, smart homes, smart medical
and healthcare systems, wearable technologies,
transportation systems, etc. However, the majority

of these devices are part of a large platform, hence,
a huge amount of data are generated that requires
high computational capabilities for storage, process-
ing, and analyzing purposes in a secure and effi cient
manner. Generally, the smart devices have limited
resources. On the other hand, cloud resources have
virtually unlimited storage and processing capabili-
ties with scalability and on-demand accessibility any-
where. Thus with the help of the cloud, the IoT smart
devices can relieve the burden of limited resources.2

For IoT applications, smart devices require low laten-
cy, high data rate, fast data access, and real-time data
analytics/processing with decision-making and mo-
bility support. Due to several drawbacks, the cloud
cannot fulfi ll the aforesaid requirements. However,

J A N U A RY/ F EB R U A RY 2 0 1 7 I EEE CLO U D CO M P U T I N G 3 5

edge computing adds many benefi ts to cloud-assisted
IoT3 and supports aforesaid requirements by keeping
data processing, communications, and storage opera-
tion on edge servers that are close to the devices at
the edge of the networks. Moreover, due to smart de-
vices’ limited range of connectivity, the edge servers
can serve as intermediaries for communications over
long distances. These edge servers are any personal
device or mobile device, stand-alone servers, or net-
work devices that are hosted within one hop far from
the end devices. In addition, the edge servers also co-
operate and connect strongly with cloud servers.

With the increasing number and availability of
smart devices, data sharing is offered within cloud-
assisted IoT applications. The data are of little use
if the smart devices do not share data with other
devices. Data sharing at the edge allows smart de-
vices to share data with lower latency and have fast
data access and higher bandwidth. The next gen-
eration wireless communications technology (5G)
will greatly depend on such solutions where mas-
sive IoT smart devices are interconnected with high
data rates at ultralow latency. Yi et al. evaluate a
performance comparison of the cloud and edge/fog
server in terms of latency and bandwidth.4 The re-
sults show that when using fog and cloud server, the
latencies are 1.416 and 17.989 ms, respectively, and
the uplink/downlink bandwidth for fog and cloud are
83.723/101.918 and 1.785/1.746 Mbps, respectively.

When the IoT smart devices share data with
other devices, potential security issues arise such as
data leakage, modifi cation, integrity, and unauthor-
ized access.5 Hence, it is essential that such shared
data be ensured confi dentiality, integrity, and access
control while sharing at the edge. Furthermore, a se-
cure data-searching technique is needed to search
and retrieve the shared data by authorized devices.

At present, there are few solutions to address the
challenges of secure data sharing and searching in
clouds. Typically, to ensure confi dentiality of shared
data, symmetric key,6 public key,7 and homomor-
phic8 encryption-based mechanism are currently
used. Access control policies based on access con-
trol list9 and dynamic attribute10 are used for access
control purposes. Searchable encryption based on
symmetric11 and public12 keys are used for search-
ing the desired data. In all these schemes, for data
security, major security-oriented processing such as
encryption, decryption, and access control mecha-
nisms are handled by the user’s device itself. In IoT,
the resource-limited smart devices cannot handle
these computation intensive operations because the
security-oriented operations will increase the heavy
computational burden.

In this paper, by considering the aforemen-
tioned limitations of current solutions for resource-
limited smart devices, we propose a lightweight
cryptographic scheme so that IoT smart devices can
share data with others at the edge of cloud-assist-
ed IoT wherein all security-oriented operations are
offl oaded to nearby edge servers. Furthermore, al-
though initially we focus on data-sharing security,
we also propose a data-searching scheme to search
desired data/shared data by authorized users on stor-
age where all data are in encrypted form. Finally,
security and performance analysis shows that our
proposed scheme is effi cient and reduces the com-
putation and communication overhead of all entities
that are used in our scheme.

The key contributions of our work are summa-
rized as follows:

1. First, we propose a secure data-sharing scheme
at the edge of cloud connected IoT smart devices
that utilizes both secret key encryption and pub-
lic key encryption. In this scheme, all security
operations are offl oaded to nearby edge servers,
thereby, greatly reducing the processing burden
of smart devices.

2. Next, we propose a searching scheme to search
desired data securely by authorized users within
encrypted, stored, shared data in edge/cloud
without leaking keyword, secret key, and data,
thereby reducing both computation and com-
munication overhead during search and data
retrieval.

3. Then, we show the verifi cation process of
the shared data as well as data retrieval after
searching. Hence, our proposed scheme attains
the integrity of shared data and searching resul-
tant data.

4. Finally, we analyze the performance of our pro-
posed scheme and prove that our scheme is ef-
fi cient and can be used in IoT applications.

The rest of the paper is organized as follows. In
the second section, we present the related crypto-
graphic mechanisms that are used in our proposed
scheme. We provide a background overview followed
by a brief description of our proposed scheme. We
then analyze the performance and compare it to re-
lated works. Finally, we conclude our paper by stat-
ing future works.

Related Cryptographic Mechanisms
This section describes the most important related
cryptographic mechanisms those are used in our
proposed scheme.

36 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SECTION TITLE NONTHEME ARTICLE

Secret Key Encryption
In secret key encryption, the user device first gener-
ates a secret key. Then the data are encrypted with
the key and is sent to the recipient user device. By
using the same key, the recipient device can recover
the data from the encrypted form of data by decrypt-
ing with the secret key. To keep the process secret,
the key is shared with communicating devices using
secure communication principals.

Public Key Encryption
In public key encryption, there are two kinds of
keys: a public key and a secret key. Before sending,
the data are encrypted with the recipient’s public
key and after receiving the data are decrypted by the
recipient’s secret key to recover the data.

Searchable Secret Key Encryption
This mechanism is based on secret key encryption
that allows searching specific data on outsourced
storage encrypted data via a generated trapdoor. The
data owner device needs to share the secret key with
all authorized devices to generate the trapdoor.

One-Way Hash Algorithms
After communicating, it is necessary to verify the
data are not modified in any way in between the
sender and receiver. This verification is called integ-
rity checking. Generally, the integrity checking is
carried out by a hash function. If a publicly known
hash function is applied to the data with a spe-
cific length, then the outcome is called hash value
of the data. However, this process is only one-way;
it cannot recover the corresponding data from the
hash value. The sender sends the data with its cor-
responding hash value. After receiving the data, the
receiver checks data integrity by the same way, ap-
plying the hash function to the received data; if both
hash values are the same, then the data has been
shown to be authentic.

Digital Signature
In the digital signature process, an authorized user
is issued a key pair (public and secret) and a cor-
responding digital certificate that ensures the iden-
tity of the user or entity. By using a secret key, the
sender signs the data or hash value of the data. Af-
ter receiving the data and signed data, the recipient
verifies both the certificate and signed data by using
the sender’s public key.

Background
Here, we present the related cryptographic mecha-
nisms that are used in our proposed scheme.

Overall System Architecture
In our scheme, we consider a model of IoT data shar-
ing and searching at the edge system that consists of
four main entities.

Smart Devices

The smart devices, connected with the physical
world, are entities that have a large amount of data
to be shared with other devices or stored in edge/stor-
age servers. The authorized smart devices are allowed
to decrypt/download the shared data and also retrieve
desired data after searching from encrypted storage.

Edge Servers

The edge servers are semitrusted and secure entities
located at the proximity of smart devices that are ca-
pable of sharing data with a number of smart devic-
es. It is responsible for security-oriented operations
such as secret key generation and management, en-
cryption, and decryption. The edge servers are main-
tained by clouds. Moreover, the edge servers provide
data storage and processing of the smart devices.

Certificate Authority

The certificate authority is fully trusted and is re-
sponsible for issuing certificates to edge servers.

Key Generation Server

The key generation server is also a trusted third par-
ty that is responsible for generation of public and se-
cret key pairs. As shown in Figure 1, the data owner
and recipient smart devices are connected to each
other by edge servers and edge servers are intercon-
nected with each other so that data are shared and
searched within the IoT scenario.

Threat Models
We focus on two types of threats during sharing and
searching the data at the edge:

1. Insider threats are initiated by malicious insiders
such as smart devices and/or edge servers that want
to access/disclose/modify the stored/shared data.

2. Outsider threats are initiated by unauthorized
outsider smart devices to access the data.

Insider threats can prove to be more devastating be-
cause they are generally launched by trusted entities.
Because people trust insider entities, the research
community focuses more on outsider attackers.

Trust Model and Assumptions
In our scheme, we assume that the edge servers are
semitrusted and are able to achieve security over

J A N U A RY/ F EB R U A RY 2 0 1 7 I EEE CLO U D CO M P U T I N G 3 7

shared/searched data. Therefore, the edge servers
work fairly well with other entities.

We assume that in edge servers there exists a
secret key generator that delivers securely these
keys to other edge servers. Finally, we assume that
the smart devices are not capable of key genera-
tion, encryption, or decryption and cannot make
own data secure.

Secure-Data Sharing and Searching
at the Edge
In this section, we present our proposed scheme
that secures the sharing and searching of data at
the edge of cloud-assisted IoT. Before data sharing
and searching, all users need to register with edge
servers by username and password to avail data
sharing, downloading, desired data searching and
retrieving. Our proposed scheme consists of four
parts: 1) key generation, 2) data and keywords up-
loading, 3) data sharing and downloading and 4)
data searching and retrieval.

Key Generation
In our scheme, the edge servers generate two kinds
of secret keys on behalf of data owner smart devices
as follows: 1) 256 bit keys are randomly generated,
and 2) two kinds of keys, Sec.Key and S.Sec.Key,
are assigned that are used for data-sharing and
-searching purposes, respectively. With the help of
the list uploaded by the data owner smart device,
the edge server generates both secret keys differ-
ently and uniquely.

Data and Keywords Uploading
The data owner first puts the username and pass-
word to login into a nearby edge server from a smart
device. After collecting the data from the physical
systems, the data are transferred from the smart
device to nearby edge servers. In addition, the data
owner sends some related keywords of the data so
that any authorized users can search the data and a
list of recipient users that are authorized to access
the data. Before uploading the data from edge server
to storage, the data and its associated keywords are
encrypted. And finally, to verify data integrity, the
encrypted data are signed. Therefore, after receiving
the data, keywords, and list, the edge server works
as follows:

Encrypt the data with secret key for sharing as

C.Share ← Encrypt (Data, Sec.Key)

Next, by using secret key for searching, the key-
words are encrypted as

C.KW.Search ← Encrypt (Keywords, S.Sec.Key)

The edge server receives pair of keys from key
generation server such as public key Public.Key and
private key Private.Key on behalf of the data owner
and every recipient smart device with the help of list
provided by the data owner’s smart device. More-
over, the edge server is issued a digital certificate
Dig.Cert from certificate authority that guarantees

Data owner
smart devices

Access

Edge

Cloud

Data recipient
smart devices

FIGURE 1. Cloud-assisted Internet of Things scenario.

38 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SECTION TITLE NONTHEME ARTICLE

the validity of the edge server and contains its iden-
tification information.

To share securely with authorized devices, the
secret key is encrypted with authorized recipients’
public keys as

C.Sec.Key ← Encrypt (Sec.Key, Public.Key)

To ensure integrity, the edge server computes the
hash value of encrypted form of the data by collision-
resistant hash function as

H1 ← Compute hash (Data)

Then, the edge server signs the hash value with
the data owner’s private key as

Signed.H1 ← Sign (H1, Private.Key)

Finally, the edge server uploads the tuple
(C.Share || C.Sec.Key || C.KW.Search || Signed.H1 ||
Dig.Cert) to the edge storage or cloud as per require-
ments under the username. After verifying Dig.Cert,
the tuple is stored in storage.

The data structure of uploading data from smart
device to edge server under a username and from

the edge server to storage under different usernames
in tabular format is shown in Tables 1 and 2.

Data Sharing and Downloading
When an authorized smart device wants to access
the data, it requests the nearby edge server after the
login using the username and password. Then, the
edge server works as follows:

The edge server downloads and stores the tuple
(C.Share || C.Sec.Key || C.KW.Search || Signed.H1
|| Dig.Cert) under the data owner username from
storage.

The edge server checks the digital certificate
Dig.Cert as

Check (Dig.Cert)

Then, first it decrypts the encrypted form of se-
cret key as

Sec.Key ← Decrypt (C.Sec.Key, Private.Key)

If the requested user is not authorized, it cannot
decrypt.

After getting the secret key, the edge server de-
crypts the encrypted data and gets the data.

Data ← Decrypt (C.Share, Sec.Key)

To verify the integrity of decrypted data, the
edge server works as

H2 ← Calculate hash (Data)
H1 ← Decrypt (Signed.H1, Public.Key)
Check (H1=H2)

If matched, then data integrity is verified.
Finally, the data are sent to the authorized

recipient.
Figure 2 illustrates the proposed secure data-

sharing scheme.

Data Searching and Retrieval
To search a desired data on encrypted data on stor-
age, the authorized user sends the keyword to the
edge server after login. The edge server then works
as follows:

The edge server receives the requested autho-
rized user’s secret key and generate trapdoor as

Tw ← Encryption (Keyword, S.Sec.Key)

Then Tw is uploaded to the storage server with a
request to search.

Table 1. Data structure of uploading from
smart device to edge server under a username.

Serial No. Data List Keywords

. . . .

. . . .

N Datan Listn Keywordsn

. . . .

. . . .

Table 2. Data structure of uploading data from edge server to
storage under different usernames.

Username Encrypted
data

....... Signed
hash value

Signature

..

..

Username C.Share .. Signed.H1 Dig.Cert

..

..

J A N U A RY/ F EB R U A RY 2 0 1 7 I EEE CLO U D CO M P U T I N G 3 9

Next, the storage server searches for the
matched encrypted keywords under the username
based on the trapdoor as

Check (C.KW.Search, Tw)

If found, the corresponding tuple (C.Share ||
C.Sec.Key || C.KW.Search || Signed.H1 || Dig.Cert) is
sent to the edge server.

The edge server checks the digital certificate
Dig.Cert as

Check (Dig.Cert)

Then, first it decrypts the encrypted form of se-
cret key as

Sec.Key ← Decrypt (C.Sec.Key, Private.Key)

If the requested user is not authorized, it cannot
decrypt.

Then, the edge server decrypts to retrieve the
data as

Data ← Decrypt (C.Share, Sec.Key)

To verify the integrity of decrypted data, the
edge server works as

H2 ← Calculate hash (Data)
H1 ← Decrypt (Signed.H1, Public.Key)
Check (H1=H2)

If matched, then data integrity is verified.
If verified, the data are sent to the requested au-

thorized device.
As searchable secret keys are generated for every

smart device, there is no possibility of matching any
data that is not shared with the requested device or
does not belong to the device. Figure 3 illustrates
our proposed secure-searching scheme.

Performance Analysis
In this section, we describe the analysis of our pro-
posed scheme.

Experimental Setup
We conducted an experimental analysis of our pro-
posed scheme using PyCrypto (www.dlitz.net/software/
pycrypto/) cryptographic toolkit. We analyzed the
performance in Windows operating system (version
6.1.7600, Windows 7 32 bit) running an AMD CPU
(AMD E-450 APU 1.65 GHz with 2-Gbyte RAM)
and 512-Gbyte storage. We used Advanced Encryp-

tion Standard (AES), Rivest-Shamir-Adleman (RSA)
algorithm, and SHA-256 for secret key encryption,
public key encryption, and hash function imple-
mentations, respectively. For AES, we used the ci-
pher block chaining mode. The performance of our

Edge server Edge serverStorage

Stored
Send

Generate
Sec.Key
Sec.S.Key
Get
Public.Key
Private.Key
Get
Data, Keywords & List Storage Edge Server

Encrypt
Data with Sec.Key
Keywords with S.Sec.Key
Encrypt
Sec.Key with Public.Key
Calculate
Hash (Data)
Sign
H(D) with Private.Key

Get
Public.Key
Private.Key

Decrypt
C.Sec.Key with Private.Key

Calculate
Hash (Data)=H

2

Decrypt
Signed H(D) with

Public.Key=H
1

Integrity Checking
H

1
=H

2

If yes, access data to
authorized user

FIGURE 2. Proposed secure data-sharing scheme.

Edge server Edge serverStorage

Sec.S.Key

C.Share, C.Sec.Key,
C.KW.Search, Signed.H1,

Dig.Cert

Send T
w

Generate
Sec.S.Key

Receive search request
Keyword

Get
Sec.S.Key

Generate trapdoor T
w

by encryption
Keyword with Sec.S.Key

Check
Dig.Cert
Decrypt

C.Sec.Key with Private.Key
C.Share with Sec.Key

Calculate
Hash (Data)=H2

Decrypt
Signed H(D) with Public.Key=H

1

H
1
=H

2
?

If yes send data to requested user

Check
Dig.Cert
Decrypt

C.Sec.Key with Private.Key
C.Share with Sec.Key

Calculate
Hash (Data)=H2

Decrypt
Signed H(D) with Public.Key=H

1

H
1
=H

2
?

If yes send data to requested user

Check
C.Searching with T

w

C.Share, C.Sec.Key C.KW.Search
Signed.H1, Dig.Cert

FIGURE 3. Proposed secure data-searching scheme.

40 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SECTION TITLE NONTHEME ARTICLE

scheme is evaluated based on processing times.
Therefore, we tested the processing time of data
encryption/decryption with AES by 256-bit key size
and different data size (10 to 500 Mbyte). We also
tested key generation time, secret key encryption
with RSA by key size of 1024 bit, hash value genera-
tion, and signing- and verification-processing times
for both downloading and uploading sides. As dis-
cussed earlier, in our proposed scheme, all security-
oriented operations of smart devices are executed at
nearby edge servers; we focused on calculating the
total processing time on edge servers.

Results
Our proposed scheme has been analyzed for the fol-
lowing different parts.

Key Generations

As discussed earlier, in our scheme, the edge serv-
ers generate 256-bit secret keys for both data sharing
(Sec.Key) and searching (S.Sec.Key) purposes. From
our analysis, we find the generation time of each se-
cret key is 1.4 ms. This time is approximately constant
and does not change with increasing the number of
devices. Moreover, this time is negligible as compared
with the encryption/decryption operation time.

Data Uploading

To calculate the total time consumed during data
uploading, we need to analyze the processing times
of encryption of the data by secret key, encryption of
the secret key by the recipient’s public key, calculat-
ing the hash values of data and hash value signing.
These times help us to calculate the total processing
time that are used to analyze the performance and
compare our process with other schemes. In gener-
al, the encryption time is increased with increasing
data size. Based on our analysis, we find processing

times of 0.58, 2.71, 4.47, and 17.41 s during encryp-
tion of data with different data sizes such as 10,
50, 100, and 500 Mbyte, respectively. In addition,
encryption of the secret key by the public key, hash
value generation, and signing process take 4.8 ms to
complete, and this time is almost constant.

Data Downloading

The total processing time during data download-
ing includes digital certificate checking, decryp-
tions of ciphers of secret key and data, hash value
generation, and sign verification. From our analy-
sis, we find the decryption-processing time to be
0.80, 2.52, 2.79, and 13.65 s to get 10-, 50-, 100-,
and 500-Mbyte data, respectively. In addition, the
rest of the processing time for tasks such as cipher
of secret key decryption, hash value generation, and
sign verification is 3.7 ms. This time almost remains
constant while varying the data size. However, we do
not include digital certificate checking time. In Fig-
ure 4, we show the time consumption of encryption
and decryption time with respect to data size.

Data Searching and Retrieval

To perform the desired data searching and retrieval,
the sender end edge server consumes 1.4 ms to gen-
erate the secret key and 5.7 ms to encrypt searching
keywords of 100-Kbyte size. On the other hand, the
recipient end edge server takes about 13.01 ms to
generate the trapdoor for searching encrypted key-
words on the storage server. However, the remain-
ing data retrieval time is almost identical to the data
downloading times.

Related Works and Comparative Analysis
This section presents some related works of cloud-
based secure data sharing and searching. We com-
pare these works with ours in terms of processing
time consumptions.

In several papers, cloud-based secure data-sharing
schemes are presented whereby users can share their
data with others/among a group via the cloud.6,7,13,14
Xu et al. propose a certificateless proxy re-encryption
scheme by using both symmetric key and public key
encryption.13 In this scheme, the data owner first en-
crypts the data with the secret key and the secret key
is encrypted with data owner’s public key, which is
then sent to the cloud. After receiving, a proxy re-
encryption agent inside, the cloud re-encrypts the en-
crypted form of the secret key and this re-encrypted
form can be decrypted only by user’s private key.
However, the private-public key pairs are not as-
sociated with a certificate. The study by Seo et al.
is also a certificateless scheme for data sharing but

0

2

4

6

8

10

12

14

16

18

20

10 50 100 500

T
im

e
 (

se
c

)

Data Size (MB)

Encryption
Decryption

FIGURE 4. Processing time of encryption and

decryption with Advanced Encryption Standard.

J A N U A RY/ F EB R U A RY 2 0 1 7 I EEE CLO U D CO M P U T I N G 4 1

without bilinear pairing.7 In this scheme, the cloud is
responsible for both secure data storage and public-
private key pair generation. The data owner encrypts
the data with public keys according to its access con-
trol policies and sends these encrypted data to the
cloud. In this scheme, the decryption is performed
twice by authorized public keys. At first, the cloud
partially decrypts the encrypted data and then the
recipient users decrypt finally to get the original data.
Khan et al. utilize an incremental cryptography-based
data-sharing scheme where the data are divided into
several blocks and these blocks are then incremen-
tally encrypted.14 A trusted third party is used as a
proxy for key generation, re-encryption, and access
control purposes. Moreover, ElGamal cryptosystem
and bilinear pairing are also used in this scheme. In
the study by Ali et al., a secret key-based encryption
and access control list for secure data sharing where
a trusted thirst party is engaged in encryption/de-
cryption, key management, and access control rather
user’s device itself is utilized.6

Other studies present secure data searching
from encrypted data the on cloud.11,15 In the study
by Pasupuleti et al., a ranked keyword search algo-
rithm is proposed so that the retrieved results com-
ing back from the cloud to the requester are ranked
based on the relevance scores instead of all data.15
Another scheme has been proposed where the rel-
evance score and k-nearest neighbor technique are
used to make efficient multikeyword search that can
return search results based on accuracy.11

However, the main drawbacks of aforesaid
schemes are that they take much processing time

due to computational-intensive bilinear paring, twice
encryption/decryption processing, and most impor-
tantly using the cloud as we mention in introduction
to this paper. Because of the limitations, IoT applica-
tions and services cannot fully use the cloud.

After calculating the total uploading and down-
loading times, we compare our results with several
other cloud-based schemes6,7,13,14 in Table 3 and
4. Because our trapdoor generation time is negli-
gible compared to the retrieving time, we do not
compare these times with the other cloud-based
searching schemes.

n this paper, we present a proposed data-sharing
and -searching scheme to share and search

data securely by IoT smart devices at the edge of
cloud-assisted IoT. The performance analysis dem-
onstrates that our scheme can achieve better effi-
ciency in terms of processing time compared with
existing cloud-based systems. In future work, we
plan on authenticating and accessing control chal-
lenges in this area. We hope that our proposed
scheme is practical to be deployed and opens a new
door in edge-oriented security research for cloud-
assisted IoT applications.

References
 1. M.R. Palattella, M. Dohler, A. Grieco, G. Rizzo,

J. Torsner, T. Engel, et al., “Internet of Things
in the 5G Era: Enablers, Architecture, and Busi-
ness Models,” IEEE J. Selected Areas in Commu-
nications, vol. 34, no. 3, 2016, pp. 510–527.

Table 3. Comparison of total uploading time in seconds.

Data (Mbyte) Ref. 6 Ref. 13 Ref. 7 Ref. 14 Our Scheme

10 6.43 13.05 14.95 14.59 0.5862

50 9.01 53.68 58.56 60.37 2.7162

100 17.37 99.69 112.41 155.15 4.4762

500 33.24 369.72 492.03 872.09 17.4262

Table 4. Comparison of total downloading time in seconds.

Data (Mbyte) Ref. 6 Ref. 13 Ref. 7 Ref. 14 Our Scheme

10 6.48 9.91 9.90 10.45 0.8057

50 10.24 33.45 35.57 35.90 2.5237

100 20.68 57.14 59.14 61.59 2.7937

500 39.25 215.3 229.81 400.21 13.6537

42 I EEE CLO U D CO M P U T I N G W W W.CO M P U T ER .O R G /CLO U D CO M P U T I N G

SECTION TITLE NONTHEME ARTICLE

 2. L. Wang and R. Ranjan, “Processing Distributed
Internet of Things Data in Clouds,” IEEE Cloud
Computing, vol. 2, no. 1, 2015, pp. 76–80.

 3. M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pil-
lai, Z. Chen, K. Ha, et al., “Edge Analytics in the
Internet of Things,” IEEE Pervasive Computing,
vol. 14, 2015, pp. 24–31.

 4. S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog Comput-
ing: Platform and Applications,” 2015 3rd IEEE
Workshop Hot Topics Web Systems and Technolo-
gies (HotWeb), 2015, pp. 73–78.

 5. J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Ey-
ers, “Twenty Security Considerations for Cloud-
Supported Internet of Things,” IEEE Internet of
Things J., vol. 3, no. 3, 2016, pp. 269–284.

 6. M. Ali, R. Dhamotharan, E. Khan, S. U. Khan,
A.V. Vasilakos, K. Li, et al., “SeDaSC: Secure
Data Sharing in Clouds,” IEEE Systems J., vol.
99, 2015, pp. 1–10.

 7. S.-H. Seo, M. Nabeel, X. Ding, and E. Bertino,
“An Efficient Certificateless Encryption for
Secure Data Sharing in Public Clouds,” IEEE
Trans. Knowledge and Data Engineering, vol. 26,
no. 9, 2014, pp. 2107–2119.

 8. H. Kumarage, I. Khalil, A. Alabdulatif, Z. Tari,
and X. Yi, “Secure Data Analytics for Cloud-
Integrated Internet of Things Applications,”
IEEE Cloud Computing, vol. 3, no. 2, 2016, pp.
46–56.

 9. J.B. Bernabe, J.L.H. Ramos, and A.F.S. Gomez,
“TACIoT: Multidimensional Trust-Aware Access
Control System for the Internet of Things,” Soft
Computing, vol. 20, no. 5, 2016, pp. 1763–1779.

 10. F. Li, Y. Rahulamathavan, M. Conti, and M. Ra-
jarajan, “Robust Access Control Framework for
Mobile Cloud Computing Network,” Computer
Communications, vol. 68, 2015, pp. 61–72.

 11. H. Li, D. Liu, Y. Dai, T.H. Luan, and X. Shen,
“Enabling Efficient Multi-Keyword Ranked
Search over Encrypted Mobile Cloud Data
Through Blind Storage,” IEEE Trans. Emerg-
ing Topics in Computing, vol. 3, no. 1, 2015, pp.
127–138.

 12. H. Li, D. Liu, Y. Dai, and T.H. Luan, “Engi-
neering Searchable Encryption of Mobile Cloud
Networks: When Qoe Meets Qop,” IEEE Wire-
less Communications, vol. 22, no. 4, 2015, pp.
74–80.

 13. L. Xu, X. Wu, and X. Zhang, :CL-PRE: A Cer-
tificateless Proxy Re-Encryption Scheme For Se-
cure Data Sharing with Public Cloud,” Proc. 7th
ACM Symposium on Information, Computer and
Communications Security, 2012, pp. 87–88.

 14. A.N. Khan, M.M. Kiah, S.A. Madani, M. Ali,

and S. Shamshirband, “Incremental Proxy Re-
Encryption Scheme for Mobile Cloud Comput-
ing Environment,” J. Supercomputing, vol. 68,
no. 2, 2014, pp. 624–651.

 15. S.K. Pasupuleti, S. Ramalingam, and R. Buyya,
“An Efficient and Secure Privacy-Preserving Ap-
proach for Outsourced Data of Resource Con-
strained Mobile Devices in Cloud Computing,”
J. Network and Computer Applications, vol. 64,
2016, pp. 12–22.

MUHAMMAD BAQER MOLLAH (m.m.baqer@ieee
.org) is a MSc student in the department of com-
puter science and engineering at the Jahangirnagar
University, Bangladesh. His research interests include
advanced communication and security techniques for
future wireless networks. He has a BSc in electrical
and electronic engineering from International Islam-
ic University Chittagong, Bangladesh. He is a Student
Member of IEEE.

MD. ABUL KALAM AZAD (makazad@juniv.edu) is
an associate professor in the department of computer
science and engineering at the Jahangirnagar Univer-
sity, Bangladesh, and a PhD candidate in Ubiquitous
Computing Lab at the University of Ulsan, Korea. His
research interests include cloud computing, wireless
sensor networks and information security. He has a
BSc in computer science and engineering from Ja-
hangirnagar University, Bangladesh, and MSc in
computer science from KTH Royal Institute of Tech-
nology, Sweden. He is a Member of IEEE.

ATHANASIOS VASILAKOS (athanasios.vasilakos
@ltu.se) is a professor in the department of computer
science, electrical and space engineering at the Lulea
University of Technology, Sweden. His research inter-
ests include networks, cloud computing, security and
Internet of Things. He has a PhD in computer engi-
neering from the University of Patras, Greece. He is a
Senior Member of IEEE.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

