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Abstract—Sleep/wake-up scheduling is one of the fundamental
problems in wireless sensor networks, since the energy of sen-
sor nodes is limited and they are usually unrechargeable. The
purpose of sleep/wake-up scheduling is to save the energy of
each node by keeping nodes in sleep mode as long as possible
(without sacrificing packet delivery efficiency) and thereby maxi-
mizing their lifetime. In this paper, a self-adaptive sleep/wake-up
scheduling approach is proposed. Unlike most existing studies
that use the duty cycling technique, which incurs a tradeoff
between packet delivery delay and energy saving, the proposed
approach, which does not us duty cycling, avoids such a trade-
off. The proposed approach, based on the reinforcement learning
technique, enables each node to autonomously decide its own
operation mode (sleep, listen, or transmission) in each time
slot in a decentralized manner. Simulation results demonstrate
the good performance of the proposed approach in various
circumstances.

Index Terms—Self-adaptation, sleep/wake-up scheduling, wire-
less sensor networks (WSNs).

I. INTRODUCTION

UE TO recent technological advances, the manufacturing

of small, low power, low cost and highly integrated sen-
sors has become technically and economically feasible. These
sensors are generally equipped with sensing, data processing
and communication components. Such sensors can be used to
measure conditions in the environment surrounding them and
then transform these measurements into signals. The signals
can be processed further to reveal properties about objects
located in the vicinity of the sensors. The sensors then send
these data, usually via a radio transmitter, to a command
center (also known as a “sink” or a “base station”) either
directly or via several relaying sensors [1]. A large number
of these sensors can be networked in many applications that
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require unattended operation, hence producing a wireless sen-
sor network (WSN). Currently, there are various applications
of WSNs, including target tracking [2], health care [3], data
collection [4], security surveillance [5], [6], and distributed
computing [7], [8].

Typically, WSNs contain hundreds or thousands of sensors
which have the ability to communicate with each other [9].
The energy of each sensor is limited and they are usually
unrechargeable, so energy consumption of each sensor has
to be minimized to prolong the life time of WSNs. Major
sources of energy waste are idle listening, collision, overhear-
ing and control overhead [10]. Among these, idle listening is
a dominant factor in most sensor network applications [11].
There are several ways to prolong the life time of WSNs,
e.g., efficient deployment of sensors [12], optimization of
WSN coverage [13], and sleep/wake-up scheduling [14]. In
this paper, we focus on sleep/wake-up scheduling. Sleep/wake-
up scheduling, which aims to minimize idle listening time,
is one of the fundamental research problems in WSNs [15].
Specifically, research into sleep/wake-up scheduling studies
how to adjust the ratio between sleeping time and awake time
of each sensor in each period. When a sensor is awake, it
is in an idle listening state and it can receive and transmit
packets. However, if no packets are received or transmit-
ted during the idle listening time, the energy used during
the idle listening time is wasted. Such waste should cer-
tainly be minimized by adjusting the awake time of sensors,
which is the aim of sleep/wake-up scheduling. Recently,
many sleep/wake-up scheduling approaches have been devel-
oped (see [14], [16], [17]). These approaches roughly fall into
three categories: 1) on-demand wake-up approaches; 2) syn-
chronous wake-up approaches; and 3) asynchronous wake-up
approaches, as categorized in [18].

In on-demand wake-up approaches [19], [20], out-of-band
signaling is used to wake up sleeping nodes on-demand. For
example, with the help of a paging signal, a node listening on
a page channel can be woken up. As page radios can oper-
ate at lower power consumption, this strategy is very energy
efficient. However, it suffers from increased implementation
complexity.

In synchronous wake-up approaches [16], [21], [22], sleep-
ing nodes wake up at the same time periodically to commu-
nicate with one another. Such approaches have to synchronize
neighboring nodes in order to align their awake or sleep-
ing time. Neighboring nodes start exchanging packets only
within the common active time, enabling a node to sleep for
most of the time within an operational cycle without missing
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any incoming packets. Synchronous wake-up approaches can
reduce idle listening time significantly, but the required syn-
chronization introduces extra overhead and complexity. In
addition, a node may need to wake up multiple times during
a full sleep/wake-up period, if its neighbors are on different
schedules.

In asynchronous wake-up approaches [23]-[25], each node
follows its own wake-up schedule in the idle state. This
requires that the wake-up intervals among neighbors are over-
lapped. To meet this requirement, nodes usually have to wake
up more frequently than in synchronous wake-up approaches.
The advantages offered by asynchronous wake-up approaches
include easiness of implementation, low message overhead for
communication, and assurance of network connectivity even
in highly dynamic networks.

Most current studies use the technique of duty cycling
to periodically alternate between awake and sleeping
states [14], [17]. Here, duty cycle is the ratio between the wake
up time length in a predefined period and the total length of
that period [10]. For example, suppose a period is 1 s and a
node keeps awake for 0.3 s and keeps asleep for 0.7 s in the
period. Then, the duty cycle is 30% (or 0.3). The use of duty
cycling incurs a tradeoff between energy saving and packet
delivery delay [26]: a long wake-up time may cause energy
waste, while a short wake-up time may incur packet deliv-
ery delay. However, in WSNs, both energy saving and packet
delivery delay are important. Because each node in WSNs is
usually equipped with an un-rechargeable battery, energy sav-
ing is crucial for prolonging the lifetime of WSNs. Because
delay is unacceptable in some applications of WSNs, e.g., fire
detection and tsunami alarm [27], reducing packet delivery
delay is crucial for the effectiveness of WSNs. An intuitive
solution to this tradeoff is to dynamically determine the length
of wake-up time. The solution proposed in [28] can dynam-
ically determine the length of wake-up time by transmitting
all messages in bursts of variable length and sleeping between
bursts. That solution can save energy but it may exaggerate
packet delivery delay, because each node has to spend time
to accumulate packets in its queue before each node transmits
these packets in bursts. Another solution, proposed in [29],
enables senders to predict receivers’ wake-up times by using a
pseudo-random wake-up scheduling approach. In the future, if
senders have packets to transmit, senders can wake up shortly
before the predicted wake-up time of receivers, so the energy,
which senders use for idle listening, can be saved. In this
case, senders do not have to make the tradeoff, because their
wake-up times are totally based on receivers’ wake-up times.
Receivers still face the tradeoff, however, since a receiver’s
wake-up time relies on a pseudo-random wake-up scheduling
function and different selections of parameters in this function
will result in different wake-up intervals. In addition, before
a sender can make a prediction about a receiver’s wake-up
time, the sender has to request the parameters in the receiver’s
wake-up scheduling function. This request incurs extra energy
consumption.

In this paper, a self-adaptive sleep/wake-up scheduling
approach is proposed, which takes both energy saving and
packet delivery delay into account. This approach is an
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Fig. 1. Overview of the proposed approach.

asynchronous one and it does not use the technique of duty
cycling. Thus, the tradeoff between energy saving and packet
delivery delay can be avoided. In most existing duty cycling-
based sleep/wake-up scheduling approaches, the time axis is
divided into periods, each of which consists of several time
slots. In each period, nodes adjust their sleep and wake up
time, i.e., adjusting the duty cycle, where each node keeps
awake in some time slots while sleeps in other time slots. In the
proposed self-adaptive sleep/wake-up scheduling approach, the
time axis is directly divided into time slots. In each time slot,
each node autonomously decides to sleep or wake up. Thus,
in the proposed approach, there is no ‘cycle’ and each time
slot is independent. Fig. 1 roughly displays how the proposed
approach works.

In Fig. 1, A and B are two neighboring nodes whose
clocks may not be synchronized. They make decisions at the
beginning of each time slot autonomously and independently
without exchanging information. There are two points in the
figure which should be noted. First, for the receiver, if the
length of a time slot is not long enough to receive a packet,
the length of the time slot will be extended automatically until
the packet is received successfully (see the first time slot of
node B). Second, when a node decides to transmit a packet in
the current time slot and the length of the time slot is longer
than the time length required to transmit a packet, the node
will also decide when in the current time slot to transmit the
packet (see the third time slot of node B).

The proposed approach is not designed incorporating a spe-
cific packet routing protocol. This is because if the sleep/wake-
up scheduling approach is designed incorporation with a
specific packet routing protocol, the scheduling approach may
work well only with that routing protocol but may work less
efficiently with other routing protocols. For example, in [14]
sleep/wake-up scheduling approach is designed incorporation
with a packet routing protocol. Their scheduling approach uses
staggered wake-up schedules to create unidirectional delivery
paths for data propagation to significantly reduce the latency
of data collection process. Their approach works very well if
packets are delivered in the designated direction, but it is not
efficient when packets are delivered in other directions.

The contributions of this paper are summarized as follows.

1) To the best of our knowledge, this approach is the

first one which does not use the technique of duty
cycling. Thus the tradeoff between energy saving and
packet delivery delay, which is incurred by duty cycling,
can be avoided. This approach can reduce both energy
consumption and packet delivery delay.

2) This approach can also achieve higher packet deliv-

ery ratios in various circumstances compared to the
benchmark approaches.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YE AND ZHANG: SELF-ADAPTIVE SLEEP/WAKE-UP SCHEDULING APPROACH FOR WSNs 3

A period ' .

Wake-up Sleep i

Wake-up Sleep

Fig. 2. Formulation of the problem.

3) Unlike recent prediction-based approaches [29], [30],
where nodes have to exchange information between each
other, this approach enables nodes to approximate their
neighbors’ situation without requesting information from
these neighbors. Thus, the large amount of energy used
for information exchange [14] can be saved.

The rest of this paper is organized as follows. In the next
section, the proposed self-adaptive sleep/wake-up scheduling
approach is described in detail. The simulation and analysis
of the proposed approach is given in Section III. Finally, this
paper is concluded in Section IV. Due to the page limitation,
the related work, theoretical analysis, a part of simulation and
future work are provided in a separate supplementary material
which can be found in IEEE Digital Library.

II. APPROACH DESIGN

In this section, we begin with the formulation of the
sleep/wake-up scheduling problem. Then, the details of the
algorithms, which are involved in the proposed approach, are
provided.

A. Formulation of the Problem

As described in Section I, the research of sleep/wake-up
scheduling studies how to adjust the ratio between sleeping
time and awake time of each sensor in each period as shown
in Fig. 2.

According to Fig. 2, formally, we have the following
definitions.

Definition 1 (Sleep): A sensor cannot receive or transmit
any packets when it is sleeping, i.e., in sleep state. A sensor
in sleep state consumes very little energy.

Definition 2 (Wake-Up): A sensor can receive and transmit
packets when it is awake, i.e., in wake-up state. A sensor in
wake-up state consumes much more energy compared to sleep
state.

Definition 3 (Sleep/Wake-Up Scheduling): Sensors adjust the
sleeping time length and the awake time length in each period
in order to save energy and meanwhile guarantee the efficient
transmission of packets.

Generally, the radio transceiver in a sensor node has three
modes of operations (termed actions): 1) transmit; 2) listen;
and 3) sleep [31]. In transmit mode, the radio transceiver can
transmit and receive packets. In listen mode, the transmitter
circuitry is turned off, so the transceiver can only receive pack-
ets. In sleep mode, both receiver and transmitter are turned off.
Typically, among these actions, the power required to transmit
is the highest, the power required to listen is medium and the
power required to sleep is much less compared to the other two
actions. The example provided in [20] shows these power lev-
els: 81 mW for transmission, 30 mW for listen, and 0.003 mW
for sleep.

TABLE I
MEANING OF EACH SYMBOL OR TERM

symbol or term
a player
row player and column player

meaning
a node/sensor
two neighbouring nodes
action 1: transmit, action 2: listen,
action 3: sleep
Each node has four states:
S0, S1, 82, 83,
where sg means the node does not
have any packet in its buffer,
s1 means the node has 1 packet in its buffer,
so means the node has 2 packets in its buffer,
s3 means the node has 3 packets in its buffer.
payoff matrices for row player
and column player, respectively
payoff obtained by row player
Tij when row player takes action %
and column player takes action j
payoff obtained by column player
Cij when row player takes action %
and column player takes action j

the probability for row player

to select actions 1, 2, 3, respectively
the probability for column player
B1, B2, Bs to select actions 1, 2, 3, respectively
[Z Successful packet transmission reward
the probability for a node
to select action @ in state s,
where a is one of the three actions
and s is one of the four states
the reinforcement value for a node
to take action a in state s.

The value is be updated using payoff
and then the value is used to update 7 (s, a).
£,0,C, € Learning rates

¥ Discount factor
Gradient step size

Time to live

three actions

state of a node

R and C

a1, 2, O3

(s, a)

Q(s,a)

n
TTL

B. Model Description

Table I describes the meaning of each symbol or term that
will be used in this paper.

Interaction between two neighboring nodes is modeled as
a two-player, three-action game, where two players,! a row
player and a column player, represent two neighboring nodes
and three actions mean fransmit, listen, and sleep. The three
terms, player, node, and sensor, are used interchangeably in
this paper. Game theory is a mathematical technique which can
be used to deal with multiplayer decision making problems.
During the decision-making process, there may be conflict or
cooperation among the multiple players. Such conflict or coop-
eration can be easily modeled by game theory via properly
setting the payoff matrices and utility functions. In WSNs,
there are conflict and cooperation among sensors during many
processes, such as packet routing and sleep/wake-up schedul-
ing. Thus, in this paper, game theory is used to deal with the
sleep/wake-up scheduling problem among sensors in WSNs.

The game is defined by a pair of payoff matrices

ror T ci1 ci2 c3
R=\1r1 rmp rn3|landC=|cy ¢ 3
31 3 133 31 C3 033

where R and C specify the payoffs for the row player and the
column player, respectively. Each of the two players selects
an action from the three available actions. The joint action of

Tt is not necessary that one player must be a sender and the other
player must be a receiver. Both of them can send packets to the other party
simultaneously, although this will cause collision.
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the players determines their payoffs according to their payoff
matrices. If the row player and the column player select actions
i and j, respectively, the row player receives payoff r; and
the column player obtains payoff c;;. The players can select
actions stochastically based on a probability distribution over
their available actions. Let oj—«3 denote the probability for
the row player to choose actions 1-3, respectively, where o+
ar + a3 = 1. Let 1—B3 denote the probability for the column
player to choose actions 1-3, respectively, where 1 4+ B2 +
B3 = 1. The row player’s expected payoff is

Do DD rjais (1)

1<i<3 \1<j<3

P, =

and the column player’s expected payoff is

2

1<i<3

P. = > i | )

1=</=<3

Let actions 1-3 denote transmit, listen, and sleep, respec-
tively. The values of those payoffs in the payoff matrices can
be defined by the energy used by a node (which is a negative
payoff). In addition, if a packet is successfully transmitted, the
payoff of the transmitter/receiver is the energy, used to trans-
mit/receive the packet, plus a positive constant, U, say U = 98.
Constant U/ is added on the energy consumption, if and only
if a packet is successfully transmitted. The payoff for action
sleep is —0.003 (the energy consumed during sleeping period)
irrespective of the opponent’s action, where the negative sign
means that the energy is consumed. The value of the constant
U is larger than the energy used for transmitting or receiv-
ing a packet. For example, if the row player has a packet to
transmit and it selects transmit and the column player selects
listen, the packet can be successfully transmitted. The payoffs
for both players are positive, which can be calculated using
the energy they use to transmit/receive the packet plus the con-
stant /. Then, the row player gets payoff —81 498 = 17 and
the column player obtains payoff —30 + 98 = 68, where 81
and 30 are energy consumption for transmitting and receiving
a packet, respectively, and the negative sign means that the
energy is consumed. However, if the column player selects
sleep, the packet cannot be successfully transmitted. Then, the
row player gets payoff —81 (the energy used for transmitting a
packet) and the column player gets payoff —0.003 (the energy
used for sleeping). It should be noted that if a node does not
have a packet to transmit, it will not select transmit.

In a time slot, each node is in one of several states which
indicate the status of its buffer. For example, if a node’s buffer
can store three packets, there are four possible states for the
node: so—s3, which imply that the node has 0-3 packets in its
buffer, respectively. The aim of each node is to find a policy
7T, mapping states to actions, that can maximize the node’s
long-run payoff. Specifically, for a node, 7 (s, a) is a prob-
ability, based on which the node selects action a in current
state s, and 7 (s) is a vector which is a probability distribution
over the available actions in current state s. Thus, policy 7 is
a matrix. For example, a node’s buffer can store three pack-
ets, so the node have four states: so—s3, as described above.
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Also, the node has three actions: transmit, listen, and sleep,
denoted as 1-3, respectively. Hence, the policy of the node is

w(so, 1) m(so,2) m(s0,3)
A meL D) w61,2) ws1,3)
T= 22 1) 7(52,2) 7(52,3)
w(s3, 1) m(s3,2) m(s3,3)

Initially, as the node does not have any knowledge, each
action is considered to be equally important in each state.
Because for each state, s, 21<i<377(5’ i) has to be 1, each
element in m is set to be (1/3). Then, through learning, the
node will adjust the value of each element in w. The detail
will be give in the following sections.

Here, the terms m(s,a) and «, B denote the probability
of selecting an action. m (s, a) takes states into consideration
while o and B do not do so. @ and B are used only for
description convenience of the model and the algorithms.

C. Algorithm

Based on the proposed model, we present a reinforce-
ment learning algorithm, which is employed by a player
to learn its optimal actions through trial-and-error interac-
tions within a dynamic environment. The algorithm is called
Q-learning (Algorithm 1). Q-learning is one of the simplest
reinforcement learning algorithms. Both reinforcement learn-
ing and evolutionary computation are subfields of machine
learning [32]. Reinforcement learning aims to solve sequen-
tial decision tasks through trial and error interactions with
the environment [33]. In a sequential decision task, a partic-
ipant interacts with a dynamic system by selecting actions
that affect state transitions to optimize some reward func-
tion. Evolutionary algorithms are global search techniques
derived from Darwin’s theory of evolution by natural selec-
tion [32]. An evolutionary algorithm iteratively updates a
population of potential solutions, which are often encoded
in structures called chromosomes. Thus, the major difference
between reinforcement learning and evolutionary algorithms is
that reinforcement learning is used by participants to maximize
their individual rewards while evolutionary algorithms are used
to achieve global optimization. Moreover, reinforcement learn-
ing algorithms are mainly decentralized and participants need
only local information, whereas evolutionary algorithms are
primarily centralized or require global information [34]. In
this paper, WSNs are distributed environments and each sen-
sor has only local information about itself, so reinforcement
learning is more suitable than evolutionary algorithms to the
sleep/wake-up scheduling problem.

The benefit of reinforcement learning is that a player does
not need a teacher to learn how to solve a problem. The
only signal used by the player to learn from its actions in
dynamic environments is payoff (also known as reward), a
number which tells the player if its last action was good
or not [33]. Q-learning as the simplest reinforcement learn-
ing algorithm is model-free, which means that players using
Q-learning can act optimally in Markovian domains without
building overall maps of the domains [35]. During the learn-
ing process, a player takes an action in a particular state based
on a probability distribution over available actions. The higher
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Algorithm 1: Sleep/Wake-Up Scheduling of a Node

1 Let £ and § be the learning rates and y be the discount
factor;

2 For each action, initialise value function Q to 0 and
policy 7 to % where 7 is the number of available actions;

3 repeat

4 select an action a in current state s based on policy
(s, a);

5 if the selected action a is transmit then

6 L the node determines when to transmit the packet

in the time slot; /* ref Algorithm 2 */

7 observe payoff p and next state s', update Q-value
0(s,a) < (1 —§)Q(s. a) +&(p + ymaxy O(s', d));

8 if the selected action a is not sleep then

9 based on the updated Q-value, approximate the

policy of the neighbour that interacted with the
node in the current time slot;

10 based on the approximation, for each action

a € A, update the node’s policy 7 (s, a);

11 else
12 calculate the average payoff
P(s) < D ea (s, 0)O(s, a);
13 for each action a € A do
14 | 7(s,a) < (s, a) + 8(Q(s, a) — P(s));

15 7 (s) < Normalise(w(s)); /* ref Algorithm 3 */
16 £« k+L1 &

17 s <« 5

8 until the process is terminated,

—

the probability of an action is, the more possible the action
could be taken. Then, the player evaluates the consequence of
the action, which the player just takes, based on the immedi-
ate reward or penalty, which it receives by taking the action,
and also based on the estimate of the value of the state in
which the action is taken. By trying all actions in all states
repeatedly, the player learns which action is the best choice
in a specific state.

Algorithm 1 describes how the proposed approach works
in one time slot and is summarized as a flowchart in Fig. 3.
The approach is described in the perspective of an individual
node. According to Fig. 3, it can be seen that the proposed
approach is composed of three steps. First, a node selects
an action based on a probability distribution over the three
actions: transmit, listen, or sleep, in the current state s. Second,
the node carries out the selected action and observes the imme-
diate payoff and the new state s’. Finally, the node adjusts
the probability distribution over the three actions in state s
based on the payoff and the approximation of the interacted
neighbour’s policy. The detail of Algorithm 1 is presented as
follows.

At the beginning of each time slot, Algorithm 1 repeats
from line 3, except for the first time slot where the algo-
rithm starts at line 1. In line 1, a learning rate determines
to what extent the newly acquired information will override

Initialise the learning rates, the
discount factor, the Q-values and
the probability distribution

I
The node selects an
action.

Is the selected

action transmit?
Observe the payoff and the
new state, and update the

The node uses Algorithm 2
to determine when to
transmit the packet in the
time slot.

The node updates its own
policy. i.e.. probability
distribution over actions,
based on the average payoff
of its actions.

Q-value
Based on the updated Q-value,
the node approximates the
neighbour’s policy. Then based
on the approximation, the node

Is the selected
action sleep?
updates its own policy.
The node uses Algorithm 3 to
normalise the probability

distribution. Then, it updates
the learning rate and the state.

Fig. 3. Flowchart of Algorithm 1.

the old information. The value of a learning rate is in the range
[0, 1]. A factor of 0 means that the node does not learn any-
thing, while a factor of 1 means that the node considers only
the most recent information [36]. A discount factor determines
the importance of future rewards. The value of a discount fac-
tor is in the range [0, 1]. A factor of 0 means that the node
is myopic by only considering current rewards, while a fac-
tor approaching 1 means that the node strives for a long-term
high reward [36]. At the beginning of each time slot, a node
has to decide in which mode it will be in this time slot. The
node thus selects an action based on the probability distribu-
tion over its available actions in its current state (line 4). The
initial probability distribution can be set equally over available
actions. For example, in this paper, there are three actions.
Initially, the probability of selecting each action can be set
to (1/3). Later, during the learning process, the probability
distribution over the actions will be updated based on the
consequence of each action. If the selected action is trans-
mit, the node needs to decide when to transmit the packet in
the time slot (lines 5 and 6, where the detail will be described
in Algorithm 2). The node then receives a payoff and reaches
a new state. It updates the Q-value of the selected action in its
current state based on the received payoff and the maximum
Q-value in the new state (line 7). Here, Q-value, Q(s, a), is
a reinforcement of taking action a in state s. This informa-
tion is used to reinforce the learning process. The formula in
line 7 is a value iteration update. Initially, Q-value is given
arbitrarily by the designer. Then, the Q-value is updated using
the current Q-value, (1 — £)Q(s, a), plus the learned knowl-
edge, £(p+ ymax,Q(s', d’)). The learned knowledge consists
of the payoff obtained by the node after taking an action plus
the estimate of optimal future value: p + ymax,Q(s’, d’). In
lines 8-10, if the selected action is not sleep, the node will
approximate the probability distribution over the neighbour’s
available actions. This neighbour is the one that has interacted
with the node, i.e., transmitted a packet to the node or received
a packet from the node, in the current time slot. Then, based
on the approximation, the node updates its policy 7 (s, a) for
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each available action. In lines 11-14, if the selected action
is sleep, which means that the node does not interact with
another node in the current time slot, the node then updates
its policy 7 (s, a) for each available action based only on its
average payoff. In line 12, the calculation of average payoff
is based on the Q-value of an action times the probability
of selecting the action. Certainly, average payoff can also be
calculated using the sum of the payoff of each action divid-
ing the total number of actions [37]. The former calculation
method, however, is more efficient and is more widely used
than the latter one [38], [39]. In line 13, the probability of
selecting each action is updated. The update of the probability
of selecting an action is derived using the current probability of
selecting the action plus the difference between the Q-value of
the action and the average payoff. If the Q-value of an action
is larger than the average payoff, the probability of selecting
the action will be increased; otherwise, the probability will
be decreased. In line 15, the probability distribution 7 (s) is
normalized to be a valid distribution, where ) ., 7 (s, a) =1
and each m (s, a) is within the range (0, 1). The details of the
normalization will be described in Algorithm 3. Finally, in
line 16, the learning rate £ is decayed, where k means that
the current time slot is the kth time slot. The learning rate
is decayed to guarantee the convergence of the algorithm as
shown in Theorem 3 in the supplementary material. The decay
method is not unique. Actually, any progressive decay meth-
ods can be used here [40]. Then, at the beginning of the next
time slot, the node repeats Algorithm 1 from line 3.

Algorithms 2 and 3 are parts of Algorithm 1, where
Algorithm 2 is the expansion of line 6 in Algorithms 1 and 3
is the expansion of line 15 in Algorithm 1. However, the
description of Algorithms 2 and 3 is too complex to be
integrated into Algorithm 1. Thus, for the clarity purpose,
Algorithms 2 and 3 are separated from Algorithm 1 to become
independent algorithms.

D. Algorithm in More Detail

In Algorithm 1, there are four issues which have to be

addressed.

1) If a node decides to transmit a packet in the current time
slot, how does the node determine when to transmit the
packet in the time slot (line 6 of Algorithm 1).

2) How does a node approximate its opponent’s probabil-
ity distribution without asking any information from the
opponent (line 9 of Algorithm 1).

3) How does a node update its policy based on the
approximation (line 10 of Algorithm 1).

4) How does an invalid probability distribution become
normalized to a valid one (line 15 of Algorithm 1).

The solutions of the four issues are presented as follows.

1) Issue 1: As discussed in Section I, if the time length of

a time slot is longer than the time length required to transmit a
packet, a node should determine when to transmit the packet
in the current time slot. The time length of a time slot and
the time length for each packet transmission are known ahead
of time. Suppose that the time length of a time slot is long
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Algorithm 2: Node Determines When to Transmit a
Packet in a Time Slot

—

Let ¢ and € be the learning rates;

2 For each sub-slot in the current time slot, initialise
Q-value to 0 and the probability for selecting each
sub-slot is initialised to x; = % where 1 <i<m and m
is the number of sub-slots;

3 select a sub-slot in current time slot based on the
probability distribution over the sub-slots
X = (X[, ..., Xm);

4 observe payoff p and update Q-value for each sub-slot,
Qi < Qi+ xi- & (P — Xy <jcpmXiQi);

5 update x; for each sub-slot,

(1 —€) + (e/m),if Q; is the highest
=

€/m, otherwise
6 X < Normalise(X);

enough for transmitting m packets.? A time slot is then divided
into m subslots. The length of a subslot is equal to the time
length required to transmit a packet. A node now needs to
select a subslot from the m subslots to transmit the packet.
Two intuitive solutions are that: 1) the node randomly picks
up a subslot to transmit the packet and 2) from the beginning
of the time slot, the node sends the packet. If the packet is
not sent successfully, the node sends it again. This process
continues until the packet is sent successfully or the current
time slot expires. However, the two solutions may incur a
large amount of energy waste, especially the second solution.
To handle this issue, another learning algorithm is devised.

In Algorithm 2, if a node decides to transmit a packet in a
time slot, it selects a subslot based on the probability distribu-
tion x over the subslots (line 3).> The node then observes the
payoff p obtained for selecting the subslot and update Q-value
for each subslot based on payoff p and current probability dis-
tribution x (line 4). Probability distribution x is adjusted based
on the updated Q-values of subslots (line 5) and is normalized
to be a valid distribution (line 6). The probability distribu-
tion update method (line 5) is e-greedy exploration [41]. The
e-greedy exploration defines a semiuniform probability distri-
bution. The current best subslot is selected with probability
1 — € + (¢/m) and one of the rest subslots is selected with
probability (e/m), where m is the number of subslots. The
purpose of exploration is to harmonize the tradeoff between
exploitation and exploration such that the node can reinforce
the evaluation of the subslots it already knows to be good
but also explore new subslots. The importance of obtaining a
Q-learning algorithm with e-greedy exploration is also justified
through a large number of applications [42]-[44].

2In this paper, it is assumed that each packet is transmitted using the same
time length. Relaxing this assumption is one of our future studies.

3Each time (except the first time) Algorithm 2 is called, only lines 3-6
are executed. As lines 1 and 2 are used for initialization, they are executed
only at the first time the algorithm is called. Also, Algorithm 2 is called and
executed only when the node selects action transmit in Algorithm 1. Every
time Algorithm 2 is called, it is executed only once in the current time slot.
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It should be noted that using the above-mentioned intu-
itive solutions will incur energy waste, as these solutions
do not have any intelligence. The proposed algorithm, i.e.,
Algorithm 2, however, enables nodes to intelligently select
proper subslots for efficient packet transmission. Thus, com-
pared to the intuitive solutions, the energy wasted on failed
packet transmission can be saved by using Algorithm 2.
Algorithm 2 needs time for convergence. However, during
the convergence process, the performance of Algorithm 2
increases gradually, whereas the performance of the intuitive
solutions is not improved as time progresses, because they
do not have any learning or adaptive ability. This means that
Algorithm 2 outperforms the intuitive approaches since the
start of running. Then, the performance gap becomes bigger
and bigger as time progresses.

2) Issue 2: Taking the row player for example (recall
Section II-B), the expected payoffs of the row player plays
actions 1-3 are

PV = lim Do D )= s O
M7 <i<3 \1gj<3 1<j<3
2 .
P§)=a121£11 Z Z rjeif | = Z nifi (4
1<i<3 \1<j<3 1<j<3
3 .
Py :()(131211 Z Z rijif | = Z ripfi 5)
1<i<3 \1<j<3 1=/=<3

respectively. It can be proven that if an action is executed
in each state an infinite number of times on an infinite run
and the learning rate & is decayed appropriately, the Q-value
of that action (calculated using the equation in line 5 of
Algorithm 1) will converge with probability 1 to Q*, where
Q* is the expected payoff of a player playing that action. The
detailed proof will be presented in the supplementary material.
According to (3)—(5), it can been found that the row player’s
expected payoff for executing an action depend on the column
player’s probabilities for executing each action. Based on this
conclusion, the row player can use the current Q-value of an
action to approximate the expected payoff of that action

0, 1) =P = 3" rp; 6)
1<j<3

0(.2) =P? = 3" rip (7)
1<j<3

0s.3) =PP = > ;. ®)
1<j<3

Using (6)—(8), the row player can calculate S1—f83 which
are the column player’s probabilities to take actions 1-3,
respectively. After the calculation, the row player adjusts its
own probabilities for executing each action, which will be
described later. Certainly, it is infeasible to execute the same
action infinite number of times. Thus, the expected payoff
can only be approximated but cannot be precisely predicted.
However, as the learning progresses, the Q-learning algorithm
will gradually converge to the optimal Q-value, Q* and thus

the precision of the approximation will increase. Then, the col-
umn player’s probability distribution can be computed more
and more precisely by the row player. Thus, it can be seen
that by using the approximation, the row player can predict
the column player’s probability distribution over the actions
without communication with the column player.

3) Issue 3: Using a gradient ascent algorithm [45], [46], a
player can increase its expected payoff by moving its strategy
in the direction of the current gradient with some step size. The
gradient is computed as the partial derivative of the player’s
expected payoff with respect to its probability for selecting
each action. We take the row player for example and set o3 =
1 — o1 — ap. Then, we have

opP
Ty = 2 "B D o ©)
U g<s 1<j<3
and
opP
Ty = 2 "B 2 b (10
> g 15j<3
If in the kth time slot, osz)—aék) are the row player’s prob-

abilities for selecting actions 1-3, respectively, then the new
probabilities for the next time slot are

(k+1) k) P,
o =a, +7n (11
! ! 8a§k)
k1 k P
o0y = o) 4 n—g (12)
2
and
a§k+1) 1 a§k+1) _ a§k+l) (13)

where 1 is the gradient step size. Based on mathematical
knowledge [47], it can be known that if 7 is sufficiently small,
the procedure will converge.

4) Issue 4: To normalize an invalid probability distribu-
tion to be a valid one, proportion-based mapping is used. The
invalid probability distribution contains the learned knowledge
and in order to preserve the learned knowledge, the normalized
probability distribution should be as “close” as possible to the
un-normalized one. Proportion-based mapping can adjust each
invalid probability into the range (0, 1) and meanwhile, can
keep the relative magnitude of the probabilities. The function
Normalise() is presented in pseudocode form in Algorithm 3.

From the above description, it can be seen that, com-
pared to existing sleep/wake-up scheduling approaches, where
nodes’ sleep/wake-up patterns are almost predefined, this
approach enables nodes to autonomously and dynamically
decide whether to sleep using learning techniques. Thus, the-
oretically, nodes in this approach are smarter than nodes in
most existing approaches.

ITI. SIMULATION AND ANALYSIS

In this section, the simulation results and the correspond-
ing analysis are presented. The simulation was implemented
using JAVA programming language and was run on Windows 7
Professional SP1 system with Intel Core i5 3.4-GHz CPU and
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Algorithm 3: Normalize()

1 Suppose that in state s, there are m available actions, i.e.,
ay,a, ..

2 Let d = minj<g<n7 (s, ar), mapping center co = 0.5 and
mapping lower bound A = 0.001;

if d < A then
p— L=
for k=1 to m do

| 7(s,ax) < co— p - (co— (s, ar));

'1am;

A . A W

for k=1 to m do
8 r <« lekﬁmn(s, ag);
9 (s, ar) < —”(‘Y;“k);

;N

10 return 7 (s);

8GB RAM. “Node” is programmed as a class and each node
is an object of this class. To simulate an area, a 2-D array
is defined, which represents the coordinates of an area. The
length of the row of the array represents the length of the area
and the length of the column of the array represents the width
of the area. For the connection of two nodes, if two nodes
are in the communication range of each other, the two nodes
are connected. For time implementation, a JAVA function is
used to read the system time. To measure the time length of
delivering a packet, system time is read at both beginning of
and end of the delivery. Then, the time length of delivering
a packet can be obtained using the system time read at the
beginning of the delivery minus the system time read at the
end of the delivery.

To evaluate the proposed self-adaptive approach (recorded
as SA-Mech.), we build a platform using JAVA to test it
in comparison with four other approaches: 1) two-radio-
MAC (TR-MAC) [20]; 2) DW-MAC [48]; 3) EM-MAC [29];
and 4) AS-MAC [26]. TR-MAC is an on-demand approach.
DW-MAC is a synchronous approach. EM-MAC and AS-MAC
are asynchronous approaches. Through comparing with these
approaches, the performance of the proposed approach can
be objectively demonstrated. The reason for selecting these
approaches is that TR-MAC and DW-MAC are the most
efficient on-demand approaches and synchronous approach,
respectively.* Both EM-MAC and AS-MAC are the latest
asynchronous approaches,’ but, to the best of our knowl-
edge, their performance has not been compared yet. Thus, we
select both of them in our simulation. These approaches are
described in detail as follows.

1) TR-MAC: In TR-MAC, two radios are used, where one
is for waking up neighbors and the other is for send-
ing packets. Unlike traditional on-demand approaches,
in TR-MAC, when a node has a packet to transmit,

4Actually, DW-MAC is not the latest synchronous approach. Instead,
Guo et al. [14] approach is the latest. However, Guo et al.’s [14] approach
heavily depends on predetermined transmission paths, so it is not very efficient
once a path is changed.

5Actuallly, Hsu et al. [49] approach was published later than both EM-MAC
and AS-MAC. However, as Hsu et al. [49] approach is jointly designed with
a routing protocol, it may not work well with other routing protocols.
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it does not wake up its entire neighborhood but selec-
tively wakes up several neighbors which have previously
engaged in communication through rate estimation.

2) DW-MAC: DW-MAC is a synchronized duty cycle MAC
protocol, where each cycle is divided into three periods:
a) sync; b) data; and c) sleep. DW-MAC has to syn-
chronize the clocks in sensor nodes periodically during
the sync period. DW-MAC then sets up a one-to-one
proportional mapping between a data period and the
following sleep period. In a data period, the sender
will send a scheduling frame to the receiver. Based
on the time interval after the beginning of the data
period and the duration of the scheduling frame trans-
mission, both sender and receiver will set up their
wake-up time interval during the following Sleep period
to transmit/receive the packet.

3) EM-MAC: In EM-MAC, each node uses a pseudo-
random number generator: X,+; = (aX, + ¢) mod m
to compute its wake-up times, where m > 0 is the mod-
ulus, a is the multiplier, ¢ is the increment, X, is the
current seed and the generated X,,+; becomes the next
seed. In this simulation, m = 65536, each node’s a, ¢ and
X, are independently chosen following the principles
suggested by Knuth [50]. By requesting the parameters,
m, a,c, and X,, from a receiver, a sender can predict
the receivers future wake-up times and prepare to send
data at those times. EM-MAC does not need synchro-
nization but it requires nodes to exchange information
before nodes can make predictions.

4) AS-MAC: In AS-MAC, nodes wake up periodically (but
asynchronously) to receive packets. Nodes intending to
transmit packets wake up at the scheduled wake-up time
of the intended target nodes. Neighboring nodes have
to communicate periodically to exchange information
about wake-up schedules to avoid long preambles at the
beginning of transmission.

In addition, we also compare SA-Mech. with its synchro-
nized version, SA-Mech.-Syn. In SA-Mech.-Syn, it is assumed
that a sink node periodically broadcasts a special packet to the
entire network to synchronize the nodes’ clocks.® The aim of
introducing SA-Mech.-Syn for comparison is to test how the
introduction of synchronization will affect the performance of
SA-Mech.

A. Simulation Setup

The simulation is operated in two types of networks: 1) grid
networks and 2) random networks. For each type of networks,
there are four different scales. This setting is to evaluate the
performance of these approaches in different scales and dif-
ferent types of networks. The scale of grid networks fluctuates
from 49 nodes to 169 nodes, where 49 nodes are structured as
a 7 x 7 grid network, 81 nodes are structured as a 9 x 9 grid
network, 121 nodes are structured as a 11 x 11 grid network,

(’Actually, clocks can only be synchronized using broadcasting only if there
are not intermediate nodes for relaying. Otherwise, too much delay will incur.
However, as the focus of this paper is not on clock synchronization, the
synchronization process is simplified.
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and 169 nodes are structured as a 13 x 13 grid network. In the
four grid networks, each node is 200 meters from its neighbors
and there are 5 sinks which are located at the four corners and
the center of the network. The four scales of random networks
are 50 nodes, 80 nodes, 120 nodes, and 170 nodes which are
randomly located in a 1000 x 1000 m area. In the four random
networks, there are five sinks which are also randomly located
in the area. The communication radius of each node is set
to 200 m.

Each node generates a packet at the beginning of each time
slot based on a predefined probability: the packet generation
probability. As the state of a node is determined by the num-
ber of packets in its buffer, the packet generation probability
directly affects the state of each node. Then, the action selec-
tion of each node will be indirectly affected. The expiry time
of a packet is based on exponential distribution. The average
size of a packet is 100 bytes, and the actual size of a packet
is based on normal distribution with variance equal to 10. In
this simulation, four packet generation probabilities are used:
0.2,0.4,0.6, and 0.8. This setting is to evaluate the perfor-
mance of these approaches in a network with different number
of transmitted packets. For packet routing, we use a basic rout-
ing approach, gossiping [51]. Gossiping is a slightly enhanced
version of flooding where the receiving node sends the packet
to a randomly selected neighbour, which picks another random
neighbour to forward the packet to and so on, until the desti-
nation or the maximum hop is reached. It should be noted that
when the destination and some other nodes are all in the signal
range of the source, based on the routing protocol, the source
still relays a packet to one of neighbors and this process con-
tinues until the destination or the maximum hop is reached.
The routing process is not optimized in the simulation, as this
paper focuses on sleep/wake-up scheduling only. This routing
protocol is not energy-efficient but it is easy to implement.
Because all of the sleep/wake-up scheduling approaches use
the same routing protocol in the simulation, the comparison
among them is still fair.

Performance is measured by three quantitative metrics:
1) average packet delivery latency; 2) packet delivery ratio; and
3) average energy consumption. The minimum time needed
by nodes to transmit or receive a packet is about 2 ms [14],
e.g., using the radio chip Chipcon CC2420. The three metrics
are described as follows.

1) Packet delivery latency is measured by the average time
taken by each delivered packet to be transmitted from
the source to the destination. Note that those packets,
which do not reach the destination successfully, have
also been taken into account. Their delivery latency is
the time interval, during which they exist in the network.

2) Packet delivery ratio is measured by using the percent-
age of packets that are successfully delivered from the
source to the destination. Each packet comes with a
parameter, time-to-live (TTL), which is a positive inte-
ger. Once a packet is transmitted from a sender to a
receiver (no matter whether successfully or unsuccess-
fully), the TTL of this packet subtracts 1. If the TTL
of this packet becomes 0 and it has not reached the
destination, the delivery of this packet is a failure.

TABLE II
PARAMETERS SETTING

Parameters Values Explanations
81mW Energy used for transmission
30mW Energy used for listen
0.003mW Energy used for sleep
u 98 Successful packet transmission reward
£,0,C,€ 0.8,0.4,0.2,0.2 Learning rates
y 0.65 Discount factor
n 0.0001 Gradient step size
TTL 8,15 Time to live

3) Average energy consumption is calculated by using the
total energy consumption to divide the number of nodes
in the network during a simulation run.

In this simulation, we set up the evaluation cases ourselves.
The approaches used for comparison in the simulation are from
four different references which use different evaluation cases.
Thus, there are no common evaluation cases among these ref-
erences. Because all the evaluated approaches are tested in
the same cases, the comparison is still fair and the results are
convincing.

The values and meanings of the parameters used in the sim-
ulation are listed in Table II, where the value of the TTL is
set to 8 in grid networks and is set to 15 in random networks.
The values of the parameters were experimentally chosen to
provide the best performance of the proposed approach.” The
values for energy consumption are from [20].

For the compared approaches, the duty cycle is set to 5%. A
full sleep/wake-up interval is set to 1 s. As our approach does
not use the duty cycle, the time length of a time slot in our
approach is set to 8 ms. As described in Section II-C, learning
rates are used to update the learned knowledge. Because the
compared approaches do not use reinforcement learning, they
do not need update and thus do not need learning rates. In each
simulation case, each of these approaches has 200 repeats and
each repeat consists of 5000 s. The detailed simulation result
data are given in the supplementary material.

B. Simulation Results in Grid Networks

The topology of a grid network is like a chessboard as
described in the previous section. Grid networks have three
rules.

1) Each of the four nodes that are located at the four corners

has two neighbors.

2) Each node on the edge has three neighbors.

3) All the other nodes have four neighbors.

Moreover, in this simulation, five sinks are located at the four
corners and the center of the network, respectively. Therefore,
the grid networks are highly regular. In this situation, the pro-
posed approach, SA-Mech., can work well, because SA-Mech.
is based on reinforcement learning, and something with high
regularity can be easily learned [33]. In the grid networks, all
the packets are transmitted to the four corners and the center,
where sinks are located. This regularity can be easily learned

"The “best performance” means that the presented results are the best
results that we ever attempted. It does not mean that the presented results
are the best in all the combinations of parameter values. As the number of
combinations of parameter values is infinite, it is infeasible to attempt all the
combinations of parameter values.
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Fig. 4. Performance of the approaches in different scales of grid networks.
(a) Average delivery latency (ms). (b) Packet delivery ratio (%). (c) Average
energy consumption (mW).

by nodes under SA-Mech. as time progresses, and based on
the learned knowledge, nodes can precisely approximate their
neighbors’ situations. The detailed analysis of the simulation
results is given in the following sections.

1) Performance of the Approaches in Different Scales of
Grid Networks: Fig. 4 demonstrates the performance of these
approaches in different scales of grid networks. The packet
generation probability is fixed at 0.2. In Fig. 4(a), with the
increase of network scale, the average delivery latency in all
of these approaches rises. This is because when the network
scale increases, based on the routing approach used in this
simulation, on average, each packet has to be transmitted with
more steps to its destination. Thus, the average delivery latency
will undoubtedly increase. Specifically, it can be found that
TR-MAC achieves the highest latency (36 ms in the 49-node
network, 52 ms in the 81-node network, 72 ms in the 121-node
network, and 88 ms in the 169-node network). This is because
in TR-MAC, whenever a sender intends to transmit a packet, it
has to wake-up the receiver and to wait for the response from
the receiver. This process will continue until the packet reaches
the destination or the TTL of the packet reaches 0, so each
packet will suffer a large latency during the transmission pro-
cess. DW-MAC and AS-MAC achieve nearly the same latency
while the latency in EM-MAC is slightly, about 5%, lower
than that in DW-MAC and AS-MAC. This can be explained
by the fact that both DW-MAC and AS-MAC require nodes
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to periodically exchange information to schedule future wake-
up intervals but EM-MAC does not need such a step, so the
time used for periodical information exchange can be saved.
Although in EM-MAC, nodes have to request their neighbors’
information for future wake-up prediction, that request is on-
demand and only once. The proposed approach, SA-Mech.,
achieves the lowest latency (25 ms in the 49-node network,
30 ms in the 81-node network, 42 ms in the 121-node network,
and 50 ms in the 169-node network), because: 1) SA-Mech.
does not require a periodical information exchange and unlike
EM-MAC, SA-Mech. does not require nodes to request their
neighbors’ information for prediction, so the corresponding
time is saved and 2) as EM-MAC is an asynchronous approach,
two neighboring nodes’ clocks are not synchronized. When
a node makes prediction regarding its neighbour’s wake-up
interval, it uses its own clock, so the prediction may not be
precise enough. In SA-Mech., nodes can dynamically approx-
imate their neighbors’ behavior based on their own and their
neighbors’ current situation, so SA-Mech. achieves a lower
delivery latency, average 10%, than EM-MAC does.

In Fig. 4(b), with the increase of network scale, the packet
delivery ratios in all of these approaches decrease. This is
mainly because of the routing approach. In different scales
of networks, each packet is given the same TTL. When the
network scale increases, the TTL value is no longer large
enough to guarantee successful transmission of a packet to
its destination. Therefore, more and more packets are unable
to be transmitted to their destinations successfully. In this sce-
nario, TR-MAC obtains the best result (95% in the 49-node
network, 90% in the 81-node network, 87% in the 121-node
network, and 85% in the 169-node network). In TR-MAC,
the transmission is on-demand and the transmission happens
after the sender communicates with the receiver, so packets are
very likely to be transmitted successfully. SA-Mech. achieves
the second best result (95% in the 49-node network, 89%
in the 81-node network, 86% in the 121-node network, and
83% in the 169-node network). In SA-Mech., to save energy,
nodes are not allowed to communicate to exchange infor-
mation. Nodes make decisions based only on approximation
which may contain errors, so SA-Mech. is somewhat, about
2%, less efficient than TR-MAC in this scenario, however,
SA-Mech. is still better than the three other approaches. Unlike
TR-MAC and SA-Mech., where senders immediately transmit
packets to intended receivers after communication or approx-
imation, in both DW-MAC and AS-MAC, there is a periodic
schedule for future wake-up times. Because in both DW-MAC
and AS-MAC, packet transmission does not happen imme-
diately after scheduling, collision is possible in the future.
For example, several senders schedule with one receiver for
future wake-up times and these wake-up times may overlap,
which will result in packet transmission failure, because: 1) in
DW-MAC, the calculation of future wake-up time is based
on a one-to-one proportional mapping between a data period
and the following Sleep period, so there is a probability that
two senders have the same or partially overlapping wake-up
times with one receiver and 2) in AS-MAC, there is not such
strict one-to-one mapping but AS-MAC is an asynchronous
approach, so the scheduled wake-up times may still overlap
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due to the asynchrony of nodes’ clocks. In EM-MAC, packet
transmission does not happen immediately after scheduling
and there is no synchronization in EM-MAC, so it suffers the
drawbacks of both DW-MAC and AS-MAC. Hence, EM-MAC
achieves the worst result in this scenario 93% in the 49-node
network, 80% in the 81-node network, 75% in the 121-node
network, and 68% in the 169-node network.

In Fig. 4(c), with the increase of network scale, the aver-
age energy consumption reduces gradually. Actually, with
the increase of network scale, the total energy consump-
tion increases, as packets may have to be transmitted with
more steps to the destination. However, because the packet
generation probability and TTL are fixed, the total energy con-
sumption cannot increase much with the increase of network
scale. Therefore, the increase speed of total energy consump-
tion is slower than the increase speed of the number of nodes.
Thus, the average energy consumption decreases with the
increase of network scale. Recall that average energy con-
sumption is computed by using total energy consumption to
divide the number of nodes. TR-MAC and SA-Mech. are very
energy efficient (2230 mW in the 49-node network, 1978 mW
in the 81-node network, 1682 mW in the 121-node network,
and 1453 mW in the 169-node network), as both of them do
not require nodes to communicate between each other to obtain
information.® The energy consumption in EM-MAC is less
than that in both DW-MAC and AS-MAC (about 10% less than
DW-MAC and 5% less than AS-MAC), because DW-MAC
and AS-MAC require an energy-consuming periodical syn-
chronization or scheduling period. This periodical process
consumes much energy. SA-Mech. is more energy efficient
than EM-MAC, since, as described above, EM-MAC suf-
fers the drawback of asynchrony, where a sender’s prediction,
based on its own clock, about an intended receiver’s wake-up
interval may not be precise enough.

In Fig. 4, it can be seen that SA-Mech. uses less energy
than SA-Mech.-Syn, but SA-Mech.-Syn can achieve higher
packet delivery ratio and less packet delivery latency. This is
because of the introduction of synchronization. In order to
realize synchronization, a sink has to periodically broadcast
to synchronize nodes’ clocks and this synchronization pro-
cess inevitably costs some energy. However, synchronization
can make the behavior of nodes more predictable compared
with asynchronized nodes. In SA-Mech., each node adapts
its behavior based on the prediction and approximation of
its neighbors’ behavior and the introduction of synchroniza-
tion can make nodes’ behavior more predictable. Therefore,
SA-Mech.-Syn can achieve higher packet delivery ratio and
less packet delivery latency than SA-Mech. This phenomenon
also exists in other circumstances (Figs. 5 and 6) due to the
same reason.

2) Performance of the Approaches Under Different Packet
Generation Probabilities in Grid Networks: Fig. 5 demon-
strates the performance of these approaches under different
packet generation probabilities. The number of nodes in the

8Recall that in TR-MAC, for each node, there is a separate wake-up radio
for communication. The energy consumption of a wake-up radio is much
lower than that of a normal sensor node.
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Fig. 5. Performance of the approaches under different packet generation
probabilities in grid networks. (a) Average delivery latency (ms). (b) Packet
delivery ratio (%). (c) Average energy consumption (mW).

grid network is fixed at 121 (11 x 11). In Fig. 5(a), with
the increase of packet generation probability, the average
packet delivery latency in each of the approaches rises. This
is because when more packets exist in the network, collision
is more likely to happen, as two or more nodes transmitting
might be within each other’s signal range. Such collision will
increase packet delivery latency. An interesting phenomenon is
that the packet delivery latency in DW-MAC increases more
sharply as the packet generation probability rises compared
with the other approaches. This is because in DW-MAC, a
sender has to schedule packet transmission with a receiver
during a data period. Since the data period is short, when sev-
eral senders want to transmit packets to one receiver, the data
period is not long enough for all the senders’ scheduling. Thus,
some of the senders have to wait until the next cycle, which
will prolong the packet delivery latency.

In Fig. 5(b), with the increase of packet generation prob-
ability, the packet delivery ratio keeps almost steady in
TR-MAC (about 87%), DW-MAC (about 80%), AS-MAC
(about 79%), and SA-Mech. (about 85%), but it goes down
in EM-MAC (from 75% to 60%). This is due to the fact
that the asynchrony of EM-MAC will incur senders’ impre-
cise prediction of intended receivers’ wake-up interval. Such
imprecise prediction may lead to collision and thus increases
the number of packet delivery failures. As the number of
packets in the network increases, collision becomes more
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likely and the number of packet delivery failures rises cor-
respondingly. Also, as shown in Fig. 5(c), because of such
a large number of packet delivery failures, the correspond-
ing energy is consumed substantially. Therefore, in EM-MAC,
the energy consumption rises significantly (from 1898 to
2952 mW) as the packet generation probability increases,
whereas in other approaches, the energy consumption just rises
steadily due to the increasing number of transmitted packets in
the network.

3) Performance Variance of the Approaches as Time
Progresses in Grid Networks: Fig. 6 demonstrates the per-
formance variance of these approaches as time progresses.
The number of nodes is fixed at 81 and the packet gen-
eration probability is fixed at 0.4. It can be seen that as
time progresses, only the performance of SA-Mech. and
SA-Mech.-Syn increases gradually, whereas the performance
of other approaches keeps almost steady. This is because in
both SA-Mech. and SA-Mech.-Syn, nodes have a learning pro-
cess. Thus, as time progresses, nodes obtain more and more
knowledge and work better and better. In other approaches,
nodes do not have such a learning process, so their perfor-
mance is relatively stable in comparison with SA-Mech. and
SA-Mech.-Syn. It has to be noted that the convergence speed
of SA-Mech. and SA-Mech.-Syn depends on the value of
learning rate, &. If the value of £ is large, e.g., 0.9, SA-Mech.,
and SA-Mech.-Syn can quickly converge to a relatively sta-
ble state in the early stages but they may heavily oscillate
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in the late stages. On the contrary, if the value of £ is too
small, e.g., 0.1, SA-Mech., and SA-Mech.-Syn will converge
very slowly but once they converge to a state, this state will
be a very stable state. Therefore, in the simulation, we ini-
tially set & a large value and let it automatically decay in each
round. There are two reasons for setting & in this way. First,
SA-Mech. and SA-Mech.-Syn can quickly move toward a rel-
atively stable state in the early stages and then slowly converge
to an optimal state in the late stages. Thus, the oscillation can
be avoided and the convergence speed is relatively quick. The
second reason is that setting £ in this way can meet the require-
ments of Theorem 3 (presented in the supplementary material)
and then, the convergence of SA-Mech. and SA-Mech.-Syn to
an optimal result can be guaranteed.

The energy cost of learning, e.g., how much energy is
used during a learning process, is not evaluated in this paper,
because the dominant energy cost in WSNs is idle listen-
ing [11]. The time cost of learning has been empirically
evaluated. For a single process, i.e., the time period during
which a node makes a decision about sleeping or awaking,
the proposed approach needs less time than the other com-
pared approaches. This can be explained by the fact that
the proposed approach does not need communication among
neighboring nodes, while the all of the other approaches need.
Communication is usually more time consuming than compu-
tation. Thus, because of the prediction of neighboring nodes’
behavior, the proposed approach needs more computation than
the other approaches but, under the proposed approach, pack-
ets need less delivery time. Because the evaluation of average
delivery latency has already included the evaluation of time
cost, the figure about the time cost for a single process of
these approaches is not presented in this paper.

In summary, the performance of the proposed approach,
SA-Mech., is better than the other approaches in most cir-
cumstances under the current simulation setup. Although in
some circumstances, the performance of TR-MAC is better
than that of SA-Mech, the difference is quite slight, about
5%, considering that TR-MAC has to use separate communi-
cation radios. Both SA-Mech. and its synchronized version
SA-Mech.-Syn. perform well under the current simulation
setup. SA-Mech.-Syn. achieves 8% higher packet delivery
ratio and 3% less packet delivery latency than SA-Mech. but
needs 10% extra energy. Thus, which one is better depends
on specific requirements. Moreover, we have also evaluated
a learning-based approach, RL-Mech. [52], in the simulation.
Like our SA-Mech., RL-Mech. is also based on reinforcement
learning. Thus, SA-Mech. and RL-Mech. have the same trend
in various situations. However, RL-Mech. is still based on duty
cycle technique and nodes have to keep awake for D consec-
utive time slots, where D is the duty cycle fixed by users.
In our SA-Mech., each time slot is independent and nodes
do not have to keep awake for a consecutive series of time
slots. Thus, the average energy consumption under SA-Mech.
is less than that under RL-Mech. for 30%. Also, as RL-Mech.
is asynchronous and nodes cannot predict their neighbors’ duty
cycle, a node’s awake time may not overlap with another
node’s awake time. Therefore, the average delivery latency
under RL-Mech. is longer than that under SA-Mech. for 20%,
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and the packet delivery ratio under RL-Mech. is less than that
under SA-Mech. for 15%. In addition, through the simulation,
it has been found that the performance of these approaches
depends, to some extent, on the routing approach. Such depen-
dency may limit the applicability of these approaches in real
situations. Therefore, such dependency should be avoided. We
leave this as one of our future studies.

IV. CONCLUSION

This paper introduced a self-adaptive sleep/wake-up
scheduling approach. This approach does not use the technique
of duty cycling. Instead, it divides the time axis into a num-
ber of time slots and lets each node autonomously decide to
sleep, listen or transmit in a time slot. Each node makes a deci-
sion based on its current situation and an approximation of its
neighbors’ situations, where such approximation does not need
communication with neighbors. Through these techniques,
the performance of the proposed approach outperforms other
related approaches. Most existing approaches are based on the
duty cycling technique and these researchers have taken much
effort to improve the performance of their approaches. Thus,
duty cycling is a mature and efficient technique for sleep/wake-
up scheduling. This paper is the first one which does not use
the duty cycling technique. Instead, it proposes an alternative
approach which is based on game theory and the reinforce-
ment learning technique. The performance improvement of the
proposed approach, compared with existing approaches, may
not be big, but the proposed approach provides a new way to
study sleep/wake-up scheduling in WSNs. This paper primar-
ily focuses on theoretical study, so there are some assumptions.
These assumptions are set to simplify the discussion of our
approach. Without these assumptions, the discussion of our
approach will become extremely complex, which is harmful
for the readability of this paper. The problem itself addressed
in this paper, however, is not simplified by these assumptions.
Thus, the problem is still general under these assumptions.
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