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Abstract—In hybrid clouds, inter-cloud links play a key role in the execution of jobs with data dependencies. Insufficient available
bandwidth in inter-cloud links can increase the makespan and the monetary cost to execute the application on public clouds. Imprecise
information about the available bandwidth can lead to inefficient scheduling decisions. This paper attempts to evaluate the impact
of imprecise information about the available bandwidth in inter-cloud links on workflow schedules, and it proposes a mechanism to
cope with imprecise information about the available bandwidth and its impact on the makespan and cost estimates. The proposed
mechanism applies a deflating factor on the available bandwidth value furnished as input to the scheduler. Simulation results showed
that the mechanism is able to increase the number of solutions with makespans that are shorter than the defined deadline and reduce
the underestimations of the makespan and cost provided by workflow schedulers.
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1 INTRODUCTION

IN hybrid clouds, when computational demands ex-
ceed the capacity of the private pool of computational

resources, users can lease resources from public cloud
providers. Such capacity of leasing on demand resources
from public providers as needed is called “elasticity” [1].

A workflow scheduler is an agent that is responsible
for determining on which resource the jobs of a work-
flow should run, distributing workflow jobs to different
processing elements so that they can run in parallel,
speeding up the execution of the application (the term
job refers to any computational work to be executed,
therefore comprising services or standard tasks) [2]. The
scheduler is a central element in a cloud architecture that
promotes elasticity.

When processing workflows with data dependencies,
jobs can be placed on different clouds which require
data transfer on Internet links. The available bandwidth
on the Internet links fluctuates because it is a shared
resource; it can decrease, which increases data transfer
times and consequently the execution time (makespan)
of workflows. Moreover, the increase of the makespan
can cause the need of longer rental periods, which
increases costs. Such variability of data transfer periods
needs to be considered by a scheduler when producing
a schedule. Moreover, the problem of workflow schedul-
ing in hybrid clouds encompasses several variables, such
as a bound to the execution time (deadline). A previous
study [3] suggested that data transfer on the Internet
links when processing workflows with data dependen-

cies has a significant impact on the execution times and
costs when using public clouds.

Most studies on cloud networking focus on datacenter
networks [4], [5], including those aimed at guaranteeing
bandwidth [6]. These studies do not address the problem
of having imprecise information about the available
bandwidth at scheduling time. In a previous work [3],
we proposed a procedure for adjusting the estimates of
the available bandwidth that are used as inputs to sched-
ulers that are not designed to address with inaccurate
information. The contribution of the present paper is
twofold. The first is to provide an answer to the funda-
mental question about the impact of uncertainty in rela-
tion to the value of the available inter-cloud bandwidth
on the schedules produced by a hybrid cloud scheduler
not originally designed to address such uncertainty. The
second is the introduction of a mechanism to reduce the
impact of such uncertainties on the schedule generated
by scheduling algorithms proposed in the literature.

In an attempt to answer this question, the performance
of three different scheduling algorithms, that were not
designed to use inaccurate information, are evaluated to
show their inability to address with the variability of the
available bandwidth in inter-cloud links. A procedure is
then proposed for adjusting the estimate of the available
bandwidth based on the expected uncertainty so that
underestimations of the makespan and costs can be
reduced.

The proposed procedure deflates the estimated avail-
able bandwidth that is used as an input to a hybrid
cloud scheduler. The deflating factor is computed using
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multiple linear regression, and the execution history of a
specific workflow is employed in the computation. The
effectiveness of the procedure in handling imprecise is
compared the effectiveness the HCOC (Hybrid Cloud
Optimized Cost) [7] and PSO (Particle Swarm Opti-
mization) [8] schedulers. The procedure was evaluated
using several scenarios involving different clouds and
their occupancy as well as a wide range of deadline
constraints. Three types of scientific workflows available
from the workflow generator gallery1 were employed in
the evaluation. This gallery contains workflows that use
structures and parameters taken from real applications.

Simulation results showed that the use of the proposed
procedures can reduce the cost estimation error as well
as increase the number of qualified solutions. The pro-
posed procedures were able to reduce the number of
disqualified solutions by up to 70% with costs reduced
by up to 10%.

This paper is organized as follows. Section 2 re-
views the workflow scheduling problem and some cloud
schedulers that were not designed to handle inaccu-
rate information about the available bandwidth. The
proposed mechanism is introduced in Section 3 and
evaluated in Section 4, and the results are discussed in
Section 5. Section 6 presents related work, and Section 7
provides final remarks and conclusions.

2 WORKFLOW SCHEDULING PROBLEM

In this section, we describe workflow scheduling in
hybrid clouds and present two scheduling algorithms;
one is cost-aware, and the other is cost- and deadline-
aware.

2.1 Workflow Representation
Workflow applications vary in size and computational
demands, and both can depend on the input data.
This process makes this type of workflow suitable for
processing in a hybrid cloud because the computational
demands can exceed the available capacity of private
clouds. Data dependencies in non-cyclic workflows are
commonly modeled as a directed acyclic graph (DAG),
in which nodes represent jobs, and arcs represent job
dependencies. A topological ordering of a DAG is an
easy way of visualizing the workflow. A job can only
start after all of its data dependencies have been solved;
i.e., after all of its parent jobs have finished and have sent
the necessary data to the job. Labels on the nodes and
arcs of a workflow DAG designate the computational
and communication demands, respectively. The compu-
tational demands depict how much computing power
a job requires to be executed, and the communication
demands depict how much data must to be transferred
between two jobs.

An arc eva,vb
of G represents a data file produced

by va that will be consumed by vb. Let G = (V, E) be

1. https://confluence.pegasus.isi.edu/display/pegasus

a DAG with n nodes (or jobs), in which each v ∈ V
is a workflow job with a non-negative computational
demand wv ∈ P , and eva,vb ∈ E , va 6= vb, is an arc that
represents the data dependency between jobs ja and jb
with a non-negative communication demand ca,b ∈ C.
The 4-tuple W = {V, E ,P, C} represents the workflow
and job demands.

Several scientific workflows generate petabytes or
even exabytes of data, which are usually distributed for
processing at different sites. Communication between
jobs occurs via file transfer, usually on Internet links.
Examples of scientific workflows include Montage2 [9],
LIGO3 [10], AIRSN [11], and Chimera [12]. Moreover,
a scheduler must produce schedules that support the
QoS requirements of an application while considering
the communication demands due to data dependencies.
Therefore, the bandwidth availability in communication
channels that connect private and public clouds plays
an important role in achieving a schedule objective.
Neglecting the variabilities of the available bandwidth in
the production of a schedule can hamper the execution
of the workflow [13] and compromise the provisioning
of quality of service (QoS) [14]. Uncertainties in the value
of the input data to the scheduler requires elaborate
scheduling schemes.

2.2 Scheduling Workflows in Hybrid Clouds
A hybrid cloud (Figure 1) is composed of the resources
of a private cloud, which are free of charge, as well as
those of one or more public cloud providers, with the
public cloud provider furnishing on-demand or reserved
resources via long-term contracts. When public resources
are leased, clients are charged on a pay-per-use basis,
usually for hours of use with reserved resource typically
leased at lower prices than on-demand ones. The hybrid
cloud scheduler must decide which resources should be
leased from public cloud providers in the composition of
the hybrid cloud so that the runtime of the application
does not exceed the deadline and satisfies budget con-
straints. In this paper, we assume that the organization
has a broker in its premises which is responsible for
connecting resources from the public clouds to those of
the private cloud resources. This broker receives requests
for workflow execution and rents resources from the
public cloud based on the decisions of schedulers.

The schedulers for hybrid clouds considered in this
paper are not aware of data center network topology.
This paper considers only application schedulers which
responsibility is to allocate tasks onto virtual machines
already provisioned by the infrastructure provider. The
allocation of virtual machines onto physical machines is
done by the infrastructure provider, which uses mech-
anisms aware of the data center network topology. Ex-
amples of network-aware VM placement scheduler can
be found in [15], [16]. The application scheduler in this

2. http://montage.ipac.caltech.edu/
3. http://www.ligo.caltech.edu/

https://confluence.pegasus.isi.edu/display/pegasus
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Fig. 1. Hybrid cloud infrastructure and workflow submission.

paper does not receive as input information about the
topology of the data center network, but considers this
information indirectly since it uses historical data of
the performance of the execution of workflows as well
estimations of the available bandwidth

Except for a few simple cases [2], the scheduling prob-
lem is NP-Complete, which calls for heuristics to pro-
duce a near-optimum schedule. Scheduling is a decision-
making process that involves characteristics from the
application being scheduled, such as memory and disk
space consumption, and from the target system, such
as processing power, storage and bandwidth availabil-
ity. Intra- and inter-cloud communication is important
in hybrid clouds because large bandwidth availability
decreases communication delays, which contributes to
the minimization of the makespan. Information about
the application and on cloud resources is commonly
assumed to be precise; however, in a real environment,
it is difficult to obtain precise estimates due to the
limitations of the measurement tools [17]. Information
about the cost of resource usage is also required by
the schedulers. By considering all this information, a
scheduler for hybrid clouds should be able to assign the
jobs of a workflow to the resources of a cloud.

2.3 Cost-aware Scheduler

One class of schedulers that can be employed in hybrid
clouds focuses only on cost minimization. One such algo-
rithm employs Particle Swarm Optimization (PSO) [8]. A
particle in the swarm is taken as a potential schedule and
represents a set of workflow jobs to be scheduled and
evaluated by a fitness function that computes the cost of
execution. A heuristic is employed to iteratively utilize
the results from the particle swarm optimization. This
heuristic first computes the average computational and
communication demands, which are expressed by labels
of nodes and arcs, respectively. It then computes an
initial schedule for each “ready job”; i.e., jobs that have
received the files that are necessary for its execution. PSO
is then run over the next set of ready jobs, and these
steps are repeated until all the jobs have been scheduled.

Algorithm 1 shows a scheduling heuristic that is based
on PSO.

Algorithm 1 Scheduling Heuristic Algorithm Overview
1: Compute the average computing cost of all jobs in all resources
2: Compute the average cost of communication between resources
3: R is a set of all jobs in the DAG G
4: Call PSO(R)
5: repeat
6: for all ready jobs ji ∈ R do
7: Assign job ji to resource pj according to the solution pro-

vided by PSO
8: end for
9: Dispatch the mapped jobs

10: R is a set of ready jobs in the DAG G
11: Call PSO(R)
12: until all jobs are scheduled

Even though the heuristics that are based on PSO do
not consider deadlines, they do not completely neglect
the makespan. The cost function that is optimized by
the PSO ensures that all of the jobs are not mapped onto
the same resource, which promotes parallelism and con-
sequently reduces the makespan by avoiding sequential
execution of the workflow on the least expensive virtual
machine available. The PSO algorithm has a time com-
plexity of O(n2× r) where n is the number of workflow
tasks, corresponding to the number of dimensions of a
particle swarm, and r the number of resources in the
hybrid cloud. The number of particles in the swarm and
the number of iterations (stopping criteria) are constant
values.

To make this scheduler deadline-aware, the PSO func-
tion was modified to calculate the monetary costs of only
the particles that satisfy the deadline. If a particle does
not satisfy the deadline, the solution is not “qualified”,
and the cost is given a value of infinity. The objective
function consists of minimizing the monetary cost by
considering only particles on the swarm that represent
qualified solutions. In this scheduling algorithm, which
is called adapted-PSO, the equation

Cost(M) = max
∀j∈P

(Ctotal(Mj)) (1)

is replaced by

Cost(M) =


∑
∀j∈P

Ctotal(Mj) if makespan(M) ≤ DM

+∞ otherwise
(2)

where M is a schedule that is represented by a particle
of the swarm, Ctotal(Mj) is the function that calculates
the monetary cost of using the resource j, and DM is
the deadline required by the user. The cost Ctotal(Mj)
of a resource j is the sum of the costs of execution and
data transfer. The time complexity of the adapted-PSO
algorithm is equal to that of the PSO algorithm.

2.4 Deadline- and Cost-Aware Scheduler
The Hybrid Cloud Optimized Cost (HCOC) [7] is an
algorithm for workflow scheduling in hybrid clouds that
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attempts to minimize the execution cost while meet-
ing specified deadlines. HCOC starts by scheduling the
workflow in the private cloud because those resources
are free of charge. If the predicted makespan exceeds the
specified deadline, jobs are selected to be rescheduled in
the public cloud.

HCOC accepts different heuristics to perform the ini-
tial schedule in the private cloud. In this paper, the first
schedule is obtained by employing the path clustering
heuristic (PCH) [18], which clusters jobs in the same path
of the DAG. In HCOC, the selection of the job that will
be rescheduled and the selection of the resource from
the public cloud are directly influenced by the available
bandwidth in the inter-cloud links. An incorrect esti-
mate of the available bandwidth can lead to deadline
violations and increased costs. Algorithm 2 details these
steps. The heuristic PCH in the fist step can be replaced
by any other heuristic, such as HEFT [19]. Both PCH and
HCOC algorithms have O(n2×r) time complexity when
considering n tasks and r resources.

Algorithm 2 HCOC Algorithm Overview
1: R is the set of all resources in the private cloud
2: Schedule G in the private cloud using PCH
3: while makespan(G) > D AND iteration < size(G) do
4: iteration = iteration+ 1
5: select node ni such that its priority is max AND ni 3 T
6: H = R; T = T ∪ t
7: num clusters = the number of clusters of nodes in T
8: while num clusters > 0 do
9: Select resource ri from the public clouds such that ((pricei)÷

(num coresi × pi)) is minimum AND num coresi <=
num clusters

10: H = H∪ {ri}
11: num clusters = num clusters− num coresi
12: end while
13: for all ni ∈ T do
14: Schedule ni in hj ∈ H such that EFTi is minimum
15: Recalculate the jobs attributes for each job
16: end for
17: end while

3 HANDLING UNCERTAINTY IN AVAILABLE
INTER-CLOUD BANDWIDTH VALUES
One of the problems faced in scheduling is the quality
of the information that is provided to the scheduler [20].
Imprecision in the input data may lead to an underesti-
mation of the makespan and as service is offered on a
pay-per-use basis, the customer will then potentially pay
more to run the application. Communication between
computational resources in the private cloud and in
the public cloud is a major issue in hybrid clouds.
Algorithms that are robust for low quality information
are of paramount importance to minimize the negative
consequences of uncertainty in the available bandwidth
information and to avoid underestimating the makespan
and budget.

3.1 Procedure for Deflating Estimates of the Avail-
able Bandwidth in Inter-cloud Links
The quality of information model used in this paper is
based on the model presented in [20]. The estimate of the

available bandwidth that is utilized as an input to the
scheduler at the scheduling time may deviate from that
experienced at runtime by a percent error p. For example,
in a scenario in which the expected uncertainty of the
available bandwidth in the inter-cloud links is p = 50%,
a data transfer that is initially estimated by the scheduler
to take 30 seconds could take between 15 and 45 seconds
during the execution of the workflow.

Overestimating the available bandwidth yields longer
data transfer times than expected, which increases the
makespan and can potentially exceed the established
deadline. This can lead to increased costs due to the
need for longer rental periods, which can surpass the
defined budget. On the other hand, underestimating the
available bandwidth can also lead to unnecessary leasing
of processing power; however, this does not call for a
budget increase. Indeed, the precision of the input data
that are provided to the scheduler is essential to the
effectiveness of the schedule that is generated by the
scheduling algorithm.

Traditional prediction methods, such as time series,
can be used to predict the available bandwidth. How-
ever, although such predictions may be a good represen-
tation of the variability of the available bandwidth for a
specific period, they would not represent the impact of
the bandwidth estimates on the predicted makespan and
costs. Thus, a procedure that correlates the uncertainty in
the available inter-cloud bandwidth with the produced
schedule is needed and has not been proposed.

Thus, a proactive procedure is proposed here to mini-
mize the negative impact of imprecise information about
the available bandwidth on the workflow execution in
hybrid clouds. The proposed procedure produces a de-
flating multiplier value that is applied to the estimated
available bandwidth. In other words, the proposed
mechanism applies a reduction factor U to the measured
inter-cloud bandwidth at the scheduling time to prevent
misleading information from affecting the performance
of the workflow execution. Information about the degree
of uncertainty is provided to the scheduling algorithm,
and the schedule is generated based on the expected un-
certainty in the data transfer time. The proposed proce-
dure calculates a U value for a workflow using a required
deadline value, an estimate of the available bandwidth
and the bandwidth variability, which indicates the uncer-
tainty of the available bandwidth. The computation of U
value employs information from previous executions of
the target workflow. Thus, for each type of workflow, the
proposed method uses previously calculated U values,
the available bandwidth and the error that occurred
in previous estimates of the makespan and cost. The
uncertainty value can be derived from benchmarks or
historical data of bandwidth availability in the inter-
cloud links obtained from monitors [21], [22], [23].

Figure 2 illustrates the proposed approach. Informa-
tion about the deadline violation and cost of a workflow
as well as on the bandwidth variabilities during the
execution of a workflow is stored in a repository and
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contributes to the history of the execution of a specific
workflow. This data is retrieved to compute the U value.

Fig. 2. Scheduler bandwidth adjustment mechanism.

3.2 Computation of the U value
The proposed procedure works between the available
bandwidth estimation tool and the scheduler. It takes
the available bandwidth value provided by the estima-
tion tool and applies the deflating U value to it before
providing the deflated bandwidth value as an input to
the scheduler.

Historical information about previously computed U
values and estimates of the available bandwidth are
stored in the database as well as the differences between
previously predicted and measured makespan values
and costs. A multiple linear regression (MLR) procedure
is employed to compute the U value; these data are
used to compute the values of the coefficients a, b and
c in the equation f(x, y) = ax + by + c, where x is a
variable that represents the current predicted uncertainty
in the available bandwidth, y is an independent variable
that represents the currently available bandwidth, and
f(x, y) = U .

The data set HG is composed of the 5-tuple
hi =

〈
bw, p,U , errormG , error$G

〉
that is used for the future

production of schedules, where bw is the estimated
available bandwidth in the inter-cloud channel for the
scheduling of a workflow G, which is represented by a
directed acyclic graph (DAG), errormG is the difference
between the estimated makespan at the scheduling time
and the real observed runtime value of G, error$G is
the difference between the estimated monetary execution
cost at the scheduling time and the real monetary cost
of the execution of G, p is the maximum error between
bw and the observed available bandwidth in the inter-
cloud channel during the execution of the workflow on
the hybrid cloud, and U is the reduction factor used at
the scheduling time.

The subset Hk ⊆ HG is used by the multiple lin-
ear regression procedure. For each (bw, p) pair in HG,
the subset Hk is constructed by selecting two 3-tuples:(
bw, p,Um

)
, which gives the minimum absolute value

of errormG , and
(
bw, p,U$

)
, which gives the minimum

absolute value of error$G. The construction of the Hk

Algorithm 3 Hk computation for a DAG Gi

1: H = history of past executions of Gi

2: Hk = ∅
3: for all (bwi, pi) pair do
4: minimumErrorm = +∞; minimumError$ = +∞
5: for all 5-tuples

〈
bwj , pj ,Uj , errormGi

, error$Gi

〉
∈ H do

6: if bwj = bwi and pj = pi then
7: if |errormGi

| < minimumErrorm then
8: minimumErrorm = |errormGi

|
9: best tuplem = 〈bwj , pj ,Uj〉

10: end if
11: if |error$Gi

| < minimumError$ then
12: minimumError$ = |error$Gi

|
13: best tuple$ = 〈bwj , pj ,Uj〉
14: end if
15: end if
16: end for
17: Hk = Hk ∪ {best tuplem, best tuple$}
18: end for

subset is illustrated in Algorithm 3. This algorithm has
a time complexity of O(n2) with n being the number of
past executions of G (size of the history of past execution
for a DAG G), and each execution n use different values
of bwj , pj ,Uj , errormGi

and errorGi .
When an application workflow G is about to be sched-

uled, the value of the reduction factor U is computed
using the linear equation f(x, y) = ax + by + c, where
the coefficients a, b, and c are given by a multiple
linear regression that employs Hk as an input. The
dependent variable U is computed from the explanatory
(independent) variables p and bw, which are obtained
from the repository. Making x = p the current predicted
uncertainty and y = bw the current available bandwidth,
a percentage reduction factor U = f(x, y) is computed for
the next schedule computation. The proposed procedure
requires a set of historical data for training before the
MLR approach can be applied.

4 EVALUATION PROCEDURE

This section describes the evaluation of the efficacy of the
proposed procedure. The performance of the schedul-
ing algorithms used in this paper are evaluated in the
publications in which they were originally presented
[7], [8]. Comparing results derived using the proposed
scheme to optimal values is infeasible, due to the NP-
Completeness of the scheduling problem. The objective
of this section is to assess the proposed mechanism when
attached to existing schedulers.

4.1 Workflows

The proposed procedure is evaluated using simulations
with synthetic workflows from the workflow generator
gallery1. The gallery contains synthetic workflows that
were modeled using patterns taken from real applica-
tions, such as Montage, LIGO and CyberShake. Work-
flows with different sizes such as 50, 100, 200 and 300
tasks (DAG nodes) are employed. For each workflow
application and for each workflow size, 100 different
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TABLE 1
Hybrid cloud environment

Provider Type Core Core Price per Data transfer
Performance time unit out price

A1 S 1 1.0 $0.00 $0.00
(private)

A2 S 1 1.0 $0.00 $0.00
(private) M 1 1.5 $0.00 $0.00

A3
S 1 1.0 $0.00 $0.00

(private) M 1 1.5 $0.00 $0.00
G 2 2.0 $0.00 $0.00

B
S 1 2.75 $0.104 $0.01

(public)
M 2 2.75 $0.207 $0.01
L 4 2.75 $0.415 $0.01

XL 8 2.75 $0.829 $0.01

C

S 1 1.0 $0.06 $0.12

(public)

M 1 2.0 $0.12 $0.12
L 2 2.0 $0.24 $0.12

XL 4 2.0 $0.48 $0.12
XXL 8 3.25 $0.9 $0.12

workflows were generated differing in the computa-
tional demands (weights of the DAG nodes) uniformly
distributed in the interval [1, 10], and the communica-
tion demands (weights of the DAG edges) uniformly
distributed in the interval [50, 60]. The set of synthetic
workflows contains 3 types of workflow applications, 4
different workflow sizes, and 100 workflows per appli-
cation and size, resulting in a total of 1, 200 synthetic
workflows. The simulator reads the workflow descrip-
tion files in a DAX format that is used by the Pegasus
Workflow Management System4.

4.2 Hybrid Cloud Scenario

Hybrid cloud scenarios are shown in Table 1. They
employ resources and prices based on the configurations
of the Amazon EC25 and Google Compute Engine6

cloud providers. To simulate the availability of private
resources, we use three different sizes of the private
cloud to simulate situations in which private resources
are not sufficient to handle the computational demands
of the workflow execution and the leasing of public re-
sources becomes necessary to meet with the application
deadline.

4.3 Simulator

To evaluate the use of the proposed procedure, a cloud
simulator was developed to calculate the estimated val-
ues of the makespan and monetary cost considering an
uncertainty value p%. Figure 3a shows an overview of
how the simulations were performed. The HCOC and
PSO schedulers were implemented in Java according to
their descriptions in [7] and [8], respectively, and the
adapted-PSO according to the adjustments described in
Section 2.3. The data inputs for the scheduler are a DAX
file, a VM file and an estimated value of the available

4. https://pegasus.isi.edu/
5. http://aws.amazon.com/ec2/
6. https://cloud.google.com/compute/

inter-cloud bandwidth bw. The DAX file contains the
description of the workflow in XML format, while the
VMs file contains information about the hybrid cloud
(Table 1). For the HCOC and adapted-PSO schedulers, a
deadline value for the workflow execution is also pro-
vided as input data. The estimated inter-cloud available
bandwidth value bw is deflated by the factor U , and
the result is used by the scheduler; U = 0 means that
no reduction was applied, and U = 5 means that the
deflated bandwidth is 95% of the value provided at the
scheduling time.

After the schedule is produced by the scheduler, it is
used as an input to the simulator, which estimates the
values of the makespan and cost of the execution of the
workflow. The simulator uses the uncertainty value p
of the inter-cloud bandwidth. Every time the simulator
needs to use the value of the inter-cloud available band-
width, it takes a new value that is uniformly distributed
in the interval [b−p% ; b+p%]. This uncertainty p is only
applied to the inter-cloud available bandwidth.

4.4 Experimental Parameters
A broad space of parameter values, including deadlines,
was used cases ranging from tight deadlines, which im-
ply that a small number of workflows can be completed
with private resources, to more loose deadlines, which
imply that almost all of the workflows can be completed
using only private resources. In addiction, three levels of
cloud utilization were employed, ranging from an idle
private cloud, in which most of the executions could
be performed without violating the deadline, to a busy
private cloud, which calls for the use of a public cloud to
accomplish most of the executions before the deadline.

The deadline values, D, varied from Tmax × 2/7 to
Tmax× 6/7 in 1/7 steps, where Tmax is the makespan of
the least expensive sequential execution of all the DAG
nodes on a single resource. Deadlines of Tmax × 1/7 re-
sulted in only disqualified solutions (makespans greater
than the deadline value) for all executions. Schedules
for deadlines of Tmax × 7/7 can be trivially achieved
by scheduling all of the tasks sequentially in the least
expensive resource and were not generated in this paper.

Inter-cloud bandwidths of 10 to 60 Mbps and intra-
cloud bandwidths of 1 Gbps were considered. We as-
sume that the intra-cloud bandwidth is greater than the
inter-cloud bandwidth, which is a reasonable assump-
tion in real hybrid cloud environments. The available
bandwidth values in the inter-cloud links were based
on measurements of TCP connections for the Amazon
EC2 cloud [21] and the Rackspace.com cloud [22].

4.5 Experimental Setup
The procedure was evaluated in three steps. In the
first step, a database that contains historical information
about the workflow execution is produced for each type
of workflow, deadline and scheduler (Figure 3a) using
a fixed deflating bandwidth U . In the second step, the

https://pegasus.isi.edu/
http://aws.amazon.com/ec2/
https://cloud.google.com/compute/
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coefficient values of the MLR equation are generated
using information from the database. In the last step,
the MLR procedure is applied to deflate the bandwidth
value, which is used as an input to the scheduler (Figure
3b) when a new workflow is set to be scheduled.

Initially, we assessed how using the procedure with
a fixed U factor ameliorates the negative impact of im-
precise information about the inter-cloud available band-
width on the execution of the workflow. To investigate
the results of the produced schedules, fixed bandwidth
deflating factors U ∈ {0, 5, 15, 25, 35, 45, 50} were used.
The choices of the fixed U values was based on experi-
ments performed for this purpose. Results indicated that
when the measured available bandwidth values were
deflated by more than 50%, the scheduler did not find
qualified solutions within the established deadline in
most of the experiments conducted. For this reason, U
values less or equal than 50% were used in this paper.
For each value of U , the percent error p ranged from
10% to 99%. For example, given a U value, a percentage
error p was introduced into the simulation to derive
the makespan and costs. The scheduling and simulation
results were stored in the database. Therefore, for each
3-tuple 〈bw, p,U〉, the cost and makespan estimates given
before (by the original values from scheduler) and after
the simulations were stored.

In the second step, based on the type of workflow
and the scheduler, the values of the coefficients of the
multiple linear regression (MLR) equation are computed
using Algorithm 3. The MLR derives the values of the
coefficients a, b and c in the equation f(x, y) = ax+by+c.
By checking the resource monitor and making x = p the
currently predicted uncertainty and y = bw the currently
available bandwidth, a deflating factor U = f(x, y) can
be computed and used as an input to the scheduler.

In the last step, new simulations were run for each
type of workflow to evaluate the behaviour of the pro-
posed mechanism. For all U = f(x, y) and p values,
average values were computed considering only the
schedules that results in makespan values lower than
the deadline.

5 RESULTS

This section presents numerical results that were pro-
duced to assess the impact of imprecise information on
the available bandwidth in inter-cloud links as well as
the effectiveness of using a constant value and a value
derived by the MLR procedure for the deflating factor
that is applied to the available bandwidth.

5.1 Impact of Imprecise Information about the Avail-
able Bandwidth on Inter-Cloud Links

To address the question posed in the introduction,
uniformly-distributed errors were introduced into the
estimates of the available bandwidth in inter-cloud links,
and the increase of CPU usage and the achievement
of the target objectives were assessed. The scheduling
algorithms were not changed to cope with inaccurate
inaccurate estimates of the available bandwidth in this
experiment. For each solution that satisfies the deadline
(qualified solution) defined by the scheduler, the esti-
mates of cost and makespan were obtained by applying
a random error p to the estimated available bandwidth
bw, which is considered to be 100% accurate at the
scheduling time.

5.1.1 Resource demand

The goal of this evaluation is to assess for different
bandwidth availability in the inter-cloud link the needs
of leasing public resources to meet execution deadline
of workflows. The CPU-time usage for the execution
of workflows was evaluated considering three private
clouds: A1, A2 and A3 (Table) 1). Workflow templates
with 50, 100, 200 and 300 tasks for three different appli-
cations were employed in the evaluation. For each work-
flow template, twenty workflows were created with dif-
ferent values of the weight of nodes and edges, for a total
of 240 workflows. Each workflow was simulated using
3 different scheduling algorithms, 5 different deadline
values, 6 inter-cloud estimates of available bandwidth
and 11 different values of p. Therefore, results were
derived from an extensive set of 712, 800 simulations.
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Fig. 4. Averages of CPU usage of private and public resources of the HCOC scheduler for scheduling the CyberShake
application of 50 tasks when the measured inter-cloud available bandwidth of 30 Mbps was varied from 0% to 99% for
all private cloud sizes A1, A2 and A3 of the Table 1.
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Fig. 5. Barplots of the cost estimates given by the HCOC, adapted-PSO and PSO schedulers to schedule 50-task
workflow application when the error in the estimated available bandwidth of 40 Mbps varies from 0% to 99%. For
HCOC and adapted-PSO schedulers, the deadline value was DG = Tmax × 4/7.

Figure 4 shows the averages CPU usage in the private,
as well as the public cloud for the HCOC scheduler to
schedule a workflow with 50 tasks of the CyberShake
application when the measured inter-cloud available
bandwidth of a 30 Mbps link was varied from 0% to
99%, with this usage shown as a function of the size of
the private cloud and the p value. Figure 4 evinces the
increase in CPU-time usage with increasing uncertainty
in the available bandwidth estimates (for a better visu-
alization, the results for p values of 10%, 30%, 50%, 70%
and 90% are not plotted). The increase in data transfer
times implies longer periods of CPU usage because
the jobs need to wait longer for the data they depend
on. This increase in CPU-time usage increases the idle
periods during which the CPU is allocated and becomes
unavailable for processing other dependent jobs, which
can lead to the need to lease resources from the public
cloud. Figure 4 shows the increase in CPU-time usage
triggered by the uncertainty in the available bandwidth
estimates.

Figure 4 shows results for three different deadline
values: a low, a median and a high value, each expressed
as a proportion of the Tmax value. In most cases, the

TABLE 2
% of disqualified solutions of Figure 5

Uncertain p%
0 20 40 60 80 99

HCOC
Montage 12% 58% 64% 82% 91% 92%

LIGO 42% 47% 49% 56% 62% 79%
CyberShake 1% 22% 24% 26% 28% 63%

Adapted-
Montage 0% 16% 17% 18% 39% 95%

PSO
LIGO 1% 20% 20% 25% 24% 74%

CyberShake 3% 19% 21% 19% 23% 49%

low deadline can not be met when using the private
cloud A3, and resources from the public cloud must
consequently be leased (Figure 4a). However, for a me-
dian deadline, resources in the private cloud A3 were
generally sufficient, which did not happen when the
workflows are executed in private cloud A1 and A2

(Figure 4b). For a high deadline value, execution only on
the private cloud A1 was not satisfatory (Figure 4c). In
general, private clouds A2 and A3 have either sufficient
or nearly sufficient resources to process the required
workload. Because the aim of this study is to analyze the
impact of the uncertainty of the available bandwidth in
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the inter-cloud links, results will be shown only for the
private cloud A1 since its resources were not sufficient
to meet the application deadline, independent of the
workflow application, scheduling algorithm, deadline
value, and available bandwidth in the inter-cloud links.

5.1.2 Failure to Achieve the Established Objective

Various simulations were performed to assess the impact
on the achievement of the objectives expressed in the
objective function of the algorithms. This evaluation
involved 1, 200 workflows (3 types of application work-
flow templates × 4 different sizes per template × 100
workflows per application and size). These workflows
were simulated by using 6 different available bandwidth
values, 11 p values and 5 deadline values. The evalu-
ation summarizes the outcome of an extensive set of
79, 200 simulations for the PSO scheduler and 396, 000
simulations for the HCOC and adapted-PSO schedulers.
The number of simulations using the PSO scheduler was
five times lower since the deadline value is not used as
part of the input data. Figure 5 shows the cost estimates
given by the HCOC, adapted-PSO and PSO schedulers
in scheduling a 50-task workflow application when the
measured inter-cloud available bandwidth of a 40 Mbps
link was between 0% and 99%.

The Montage and CyberShake applications have a
similar structural pattern in which the DAG jobs send
the same intermediate file to two or more successor
jobs. Moreover, depending on how the schedule was
produced, sending multiple copies of the intermediate
file can increase the traffic in the inter-cloud links [24].
Because the PSO algorithm does not consider the avail-
able bandwidth between resources but only the cost of
data transmission from/to the public cloud, unnecessary
flooding of the inter-cloud links can occur. This implies
an increase of the execution cost of the Montage and
CyberShake applications (Figure 5c). For example, when
applying an uncertainty value of 20% to the inter-cloud
available bandwidth of a 40 Mbps that was used to pro-
duce the original schedule, the average cost of running
the Montage application in hybrid clouds increased by
12%, while for an uncertainty value of 99%, the cost
doubled. For CyberShake, the cost increased by 9% for
a p value of 20%, while for a p value of 99% the cost
doubled as well. Although the LIGO application sends
fewer duplicate intermediate files to other dependent
jobs, which contributes with less traffic in the inter-cloud
links, the uncertainty in the available bandwidth esti-
mates cooperated with the increase in the cost estimates.
The cost increased 4% for p = 20% and only 47% for
p = 99%.

For each qualified schedule, a variability p > 0 in the
available bandwidth estimates was introduced by the
simulator that checks if the schedule remained qualified.
Table 2 shows the percentage of solutions that missed
the deadline (disqualified solutions) for the HCOC and
adapted-PSO schedulers. Schedules produced by the

PSO scheduler were not classified as either qualified and
disqualified since it is a cost-aware scheduler.

Because both HCOC and the adapted-PSO are
deadline- and cost-aware schedulers, they are expected
to produce schedules that meet the deadline with low
costs. However, the effect of errors in the inter-cloud
available bandwidth estimates resulted in increased
makespans, which caused the deadline to be missed.
For example, of the 88% of the solutions for Montage
produced by HCOC that were eligible when p = 0%, 58%
were disqualified for p = 20%, and 91% were disqualified
for p = 80%. The schedules produced by adapted-PSO
were less impacted. For example, of the 100% of the
Montage solutions that were eligible when p = 0%,
16% were disqualified when p = 20%, and 39% were
disqualified when p = 80%. The cost estimates provided
by HCOC, increased by 5% when the p value varied
from 0% to 20%, and 30% when p value varied from
0% to 80%. The cost estimates provided by the adapted-
PSO also increased with increasing values of p. The cost
estimate increased by 14% when the p value varied from
0% to 20%, and 28% when p value varied from 0% to
80%. Similar trends were obtained for the LIGO and
CyberShake workflows; i.e, increasing the error in the
estimated available bandwidth, increases the number of
disqualified schedules as well as underestimates costs.

This section showed results for schedulers that were
not designed to address with inaccurate information
about the available bandwidth and produced schedules
with misleading cost and makespan estimates. The next
section will show that the use of a deflating factor for
the available bandwidth that is used as an input to the
scheduler can reduce the disqualification of schedules,
by avoiding underestimates of the makespan and cost.
Because the original PSO scheduler does not consider
the available bandwidth to produce schedules, it was
not evaluated hereafter.

5.2 Using a Fixed Deflating U value

Deflating the measured available bandwidth value us-
ing the U value and providing the deflated bandwidth
estimate to the scheduler at the scheduling time will
hopefully reduce the negative impact of imprecise band-
width information on the production of schedules. The
results from the next experiments assess the extent to
which a deflating factor U mitigates the negative impact
of imprecise information about the available bandwidth
on the produced schedules.

One thousand two hundred workflows were em-
ployed in this evaluation (3 types of application work-
flow template × 4 different workflow size per template
× 100 workflows per application and size). These work-
flows were used in simulations with 6 different available
bandwidth values, 11 p values, 5 deadline values and 6
deflating U values. The experiment used a fixed U value,
U ∈ {0, 5, 15, 25, 35, 45, 50}, but for better visualization,
results for U = 35 and U = 45 were not plotted.
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Fig. 6. Barplots of the costs of disqualified solutions when the measured available bandwidth of 40 Mbps was deflated
by a fixed U value and provided as input to the HCOC (top) and PSO-adpted (bottom) schedulers to schedule the
applications workflows of 50 tasks with the deadline value equal to DG = Tmax × 4/7. The x-axis represents the
estimated error in the available bandwidth which varies from 10% to 99%.

This experiment summarizes the outcome of a set of
2, 376, 000 simulations for each deadline- and cost-aware
scheduler. Figure 6 shows the cost estimates given by the
HCOC and adapted-PSO schedulers to schedule a 50-
task workflow application when the uncertainty of the
measured inter-cloud available bandwidth of 40 Mbps
and 60 Mbps varied from 0% to 99%. Table 3 shows the
percentage of disqualified solutions shown in Figure 6
when the available bandwidth estimates were deflated
by a fixed U value.

The results show a reduction in the percentage of dis-
qualified schedules when the deflating U value was em-
ployed. This trend was present for most cases with the
three types of applications. For example, using HCOC
with U = 0.05 and p = 60%, there was an increase of
10%, 21% and 22% in the number of qualified solutions
for the LIGO, CyberShake and Montage applications,
respectively; while for the adapted-PSO, the number of
qualified solutions increased 21%, 20% and 8% for LIGO,
CyberShake and Montage application, respectively.

However, the use of a large deflating U value increased
the number of disqualified solutions. For HCOC, when
U = 0.5 and p = 60%, the number of disqualified solu-
tions for LIGO, CyberShake and Montage increased by
15%, 5% and 13%, respectively; while using the adapted-
PSO caused increases of 15%, 20% and 24% for LIGO,
CyberShake and Montage, respectively. This experiment

also suggests that the number of disqualified solutions
can be reduced in the presence of high variability of the
available bandwidth. For example, for an uncertainty
value of 99% and U = 0.05, the numbers of qualified
solutions produced by HCOC increased by 23% for
CyberShake and 3% for LIGO. For the adapted-PSO, the
increases were 2% for Montage, 21% for LIGO, and 7%
for CyberShake. In general, regardless of the scheduler
and application, deflating the available bandwidth esti-
mates increases the number of schedules that satisfy the
deadline in the presence of variabilities of the available
bandwidth of inter-cloud links.

The use of a non-null deflating factor U did not imply
an increase in estimated costs, as shown in Figure 6. For
example, using HCOC to schedule the LIGO application
when p = 40% led to costs 13% lower for U = 0.05
instead of U = 0. In other cases, the use of a large
deflating U value resulted in a further reduction in costs
instead of using a short U value. For example, when
the adapted-PSO algorithm was used to schedule Cyber-
Shake application for p = 10%, the cost was 6% lower
when using U = 0.25 instead of U = 0.05. The decrease
in cost was possible since the set of virtual machines
selected by the algorithm to perform the same task
scheduling is different when the available bandwidth
estimates deflated by different U values.

These experiments suggest that the decrease in the
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TABLE 3
% of disqualified solutions of the evaluation for the HCOC scheduler (left) and the Adapted-PSO (right) of Figure 6

HCOC Uncertain p%
U value 10 20 40 60 80 99

LI
G

O

0.0 52% 55% 61% 67% 81% 85%
0.05 43% 53% 53% 57% 56% 66%
0.15 45% 46% 47% 59% 62% 70%
0.25 46% 47% 47% 60% 58% 75%
0.50 79% 80% 80% 82% 86% 88%

C
Y

B
ER

-

0.0 16% 17% 22% 23% 31% 80%

SH
A

K
E 0.05 2% 2% 2% 2% 5% 13%

0.15 1% 1% 1% 1% 6% 24%
0.25 6% 6% 6% 6% 10% 22%
0.50 22% 24% 26% 28% 37% 57%

M
O

N
TA

G
E 0.0 13% 58% 64% 82% 91% 92%

0.05 1% 49% 52% 60% 79% 85%
0.15 1% 74% 73% 75% 81% 87%
0.25 2% 77% 79% 83% 87% 89%
0.50 74% 90% 92% 95% 95% 95%

Adapted-PSO Uncertain p%
U value 10 20 40 60 80 99

LI
G

O

0.0 18% 19% 17% 22% 22% 61%
0.05 3% 3% 3% 3% 3% 6%
0.15 11% 11% 11% 11% 12% 13%
0.25 14% 14% 14% 14% 16% 19%
0.50 20% 20% 20% 32% 35% 40%

C
Y

B
ER

-

0.0 18% 17% 18% 25% 24% 52%

SH
A

K
E 0.05 5% 5% 5% 5% 7% 8%

0.15 10% 10% 10% 11% 11% 13%
0.25 14% 14% 14% 14% 15% 19%
0.50 22% 23% 24% 40% 40% 45%

M
O

N
TA

G
E 0.0 14% 15% 17% 13% 14% 67%

0.05 2% 4% 4% 5% 7% 12%
0.15 12% 13% 13% 15% 17% 19%
0.25 14% 19% 19% 22% 26% 23%
0.50 21% 33% 33% 37% 53% 65%

number of disqualified solutions depends on the U value
and that there is no clear trend for choosing an optimum
value. This motivated the adoption of a procedure that
considers the execution history to determine the most
appropriate U value.

5.3 Using the Proposed Mechanism to Calculate the
U value
When the U value is derived using the proposed proce-
dure, qualified schedules were produced for almost all
p values. The analysis of the execution history is the key
to determining a specific deflating factor for the U value.
The results show the extent to which using the U value
that is computed considering the execution history can
mitigate the negative impact of imprecise information
about the available bandwidth. This section shows the
results of simulations when the employment of the
proposed procedure to calculate a deflating factor U to
the measured available bandwidth value was used as
an input to the scheduler. This experiment summarizes
a set of 396, 000 simulations for each deadline- and cost-
aware scheduler (3 application workflow templates × 4
different sizes × 100 workflows per size × 6 available
bandwidth values × 11 p values × 5 deadline values).

A comparison of the results obtained when the pro-
posed MLR procedure was not employed (Section 5.1.2)
showed a decrease in the percentage of disqualified
schedules. This is true independent of the p value for
the three types of applications and for both schedulers.
For example, by comparing Table 2 with 4 using the
employment of the HCOC scheduler for a measured
available bandwidth of 40 Mbps was deflated by a
specific U value with p = 20%, the number of quali-
fied solutions increased by 10%, 22% and 51% for the
LIGO, CyberShake and Montage applications, respec-
tively. When the adapted-PSO was employed, the num-
ber of qualified solutions increased by 17%, 16% and 13%
for the LIGO, CyberShake and Montage applications,
respectively. Even in scenarios with high uncertainties
in the available bandwidth estimates, a noticeable in-
crease in the number of qualified solutions was found.
For example, using HCOC and p = 99%, the number

of qualified solutions for the LIGO, CyberShake and
Montage applications increased by 35%, 35% and 28%,
respectively; while for the adapted-PSO this increased
by 31%, 19% and 12%, respectively.

The use of a specific U value not only increases the
number of qualified solutions, but also achieves slightly
less expensive schedules, as shown in Figure 7 . For
example, using HCOC and p = 40%, the costs of the
LIGO, CyberShake and Montage applications were re-
spectively 9%, 5% and 4% lower than the original cost
estimates (Figures 6 with U = 0). The adapted-PSO
scheduler reduced the costs of these LIGO, CyberShake
and Montage applications by 5%, 4% and 2%, respec-
tively. The results show that when the deflated values
for the measured available bandwidths are used, the
scheduler produces schedules with higher utilisation of
resources, thus ensuring that the schedules meet the
deadlines as well as reducing misleading cost estimates.

A U value computed by the proposed procedure is
dependent on several parameters such, as the type of
workflow, the deadline value, the value of the measured
available inter-cloud bandwidth, the error occurred in
previous estimates of the makespan and the cost due to
the presence of an uncertainty value on the bandwidth
value. Because several parameters can influence the U
value, applying a fixed value as in the previous sub-
section does not produce a single best deflating factor
value, because it can either underestimate or overesti-
mate the available bandwidth, which leads to a deadline
violation or unnecessary rental of processing power on
public clouds. Thus, for a particular workflow applica-
tion, a deadline value, an available bandwidth value and
an uncertainty value, the execution history assists the
proposed procedure to determinate a specific U value
that tries to avoid the disqualification of the schedule.

The computation of the U value depends on the size of
the execution history. The greater the number of tuples
〈bm, p,U〉 in the Hk subset, the greater the amount of
information used by the multiple linear regression to
yield the linear equation U = f(x, y). For example, in
our previous work [14], the multiple linear regression
were obtained by using 25%, 50%, 75% and 100% of
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(a) HCOC – 40 Mbps
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(b) Cost – HCOC – 50 Mbps
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(c) HCOC – 60 Mbps
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(d) PSO-adapted – 40 Mbps
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(e) Cost – PSO-adapted – 50 Mbps
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(f) PSO-adapted – 60 Mbps

Fig. 7. Barplots of the costs when the measured available bandwidth 40 Mbps, 50 Mbps and 60 Mbps was deflated by
a specific U value and provided as input to the HCOC (top) and PSO-Adapted (bottom) schedulers to schedule the
applications workflows of 50 tasks with the deadline value equal to DG = Tmax × 4/7.

the historical data. When using half of the execution
history, better results were obtained when a quarter of
this historical data was used. A simulation pattern of
improvement was also found when three quarters of the
historical data were used in the regression instead of half
of it. However, we noticed that there was little improve-
ment in the results when the amount of historical data
considered increased from 75% to 100%. Therefore, since
the amount of execution history in this paper is the same
as the previous paper, we consider only the employment
of 100% of the historical data in the evaluation of the
proposed procedure. Due to space limitations in [14],
we only presented the evaluations results when 50% and
100% of the historical were considered.

The results shown in this section indicate that the
employment of the proposed mechanism was able to
reduce the impact of misleading estimates of the avail-
able bandwidth values and produced a large number
of qualified solutions. When the proposed procedure is
used with schedulers that were not designed to cope
with inaccurate information about the available band-
width, the costs were not higher than when the U value
was not used, which implies that a higher utilization of
resources in the private cloud was achieved.

6 RELATED WORK
Schedulers for cloud computing determine which jobs
should use local resources and which resources should

be leased from the public cloud to minimize the work-
flow execution time (makespan) and overall costs. Re-
source allocation and workflow scheduling in heteroge-
neous systems, such as hybrid clouds, have been inten-
sively studied [7], [8], [13], [25]. Nevertheless, scheduling
workflows is an NP-Complete problem [2]; as a result,
alternatives are crucial for finding approximate optimal
solutions. Heuristics [7], [13], meta-heuristics [8] and
linear programming [25] are tools that are commonly
used to solve scheduling problems.

Imprecision in the input information to the sched-
uler has been approached in the literature using sev-
eral reactive techniques, such as dynamic scheduling
[26], rescheduling [27], and self-adjusting [28]. Reactive
techniques are best suited of fluctuations in resource
availability during the execution of the workflow. Be-
cause reactive mechanisms are based on monitoring
of resource utilization and on the performance of the
execution of applications, imprecise information can be
generated by the intrusion effects of monitoring tools. As
a result, unnecessary job migration can occur in addition
to monitoring overhead [29].

An algorithm based on fuzzy optimization to schedule
workflows in grids under uncertainty in both applica-
tion demands and resource availability was presented
in [29]. Although the authors compared the proposed
algorithm to static schedulers for heterogeneous sys-
tems, the impact of imprecise estimates of the available
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TABLE 4
% of disqualified solutions of the evaluation for the HCOC scheduler (left) and the Adapted-PSO (right) of Figure 7

Uncertain p%HCOC
0 20 40 60 80 99

40 LIGO 33% 37% 40% 47% 60% 70%

Mbps CyberShake 0% 0% 3% 7% 7% 50%

Montage 3% 7% 23% 27% 77% 90%

50 LIGO 30% 20% 23% 37% 43% 70%

Mbps CyberShake 0% 0% 3% 0% 7% 40%

Montage 7% 0% 3% 7% 33% 87%

60 LIGO 3% 3% 3% 0% 7% 43%

Mbps CyberShake 3% 10% 0% 3% 3% 3%

MONTAGE 7% 3% 3% 13% 20% 83%

Uncertain p%Adapted-PSO
0 20 40 60 80 99

40 LIGO 3% 3% 3% 0% 7% 43%

Mbps CyberShake 3% 3% 0% 3% 3% 30%

Montage 7% 3% 3% 13% 20% 83%

50 LIGO 30% 20% 23% 37% 43% 70%

Mbps CyberShake 0% 3% 0% 0% 0% 20%

Montage 7% 0% 3% 7% 33% 87%

60 LIGO 0% 0% 0% 0% 3% 13%

Mbps CyberShake 0% 0% 0% 3% 3% 7%

Montage 7% 7% 3% 7% 10% 53%

bandwidth were not evaluated for utility grids and
clouds. Rahman et al. [5] characterized a measurement
study to characterize the impact of virtualization on
the performance of the network of the Amazon EC2.
Through analysis of packet delay, TCP/UDP throughput
and packet loss at Amazon EC2 virtual machines, they
concluded that unstable network throughput and large
delay variations can negatively impact the performance
of scientific applications running on clouds. Indeed, the
authors argued that strategies for task-mapping needs
customization to handle inaccurate information on the
available bandwidth.

Although these papers advance the workflow schedul-
ing problem in cloud computing environments, none
of them considers the impact of bandwidth uncertainty
on the schedule. In other words, the scheduling algo-
rithms assume that the estimated available bandwidth
at the scheduling time is 100% precise. However, this
assumption is not always true, and the schedules can be
negatively affected during the execution of the workflow.
Tools for estimating available bandwidth produce esti-
mates with large variability [30], and schedules can be
negatively affected by misleading bandwidth estimates
during the execution of workflows, especially in hybrid
clouds. Few works in the literature consider the impact
of the bandwidth uncertainty in communication chan-
nels at the scheduling time.

7 CONCLUSIONS

The performance of workflow execution in hybrid clouds
depends largely on the available bandwidth in the inter-
cloud links since this bandwidth determines the data
transfer time between tasks residing in different clouds.
The available bandwidth in inter-cloud links fluctuates
considerably since Internet links are shared resources,
this fluctuation contributes to imprecision in estimates of
the available bandwidth, and the use of these estimates
as an input data to a scheduler usually results in increase
in the workflow execution time, as well as costs. The
negative impact of imprecise estimation of available
bandwidth can be reduced by the adoption of scheduling
schemes which take into consideration uncertainties in
input values.

The mechanism proposed in this paper applies a
deflating factor to the available bandwidth value that

is provided as input to the scheduler. The deflating
factor is computed using multiple linear regression, and
the execution history of a specific workflow is used in
the computation. The procedure is employed before the
information about the currently available bandwidth is
provided to the scheduler.

We evaluated the proposed multiple linear regres-
sion mechanism using simulations and three different
scheduling algorithms to schedule three different real-
life scientific workflow application. The results pro-
vide evidence that, in general, the proposal is capable
of producing schedules with less misleading cost and
makespan estimates, as well as increasing the number
of qualified solutions (solutions within the application
deadline). More specifically the proposed procedures
reduce the number of disqualified solution by up to 70%,
with costs reduced by up to 10%.

As Future work, we intend to implement the proposed
procedure on a real testbed in order to verify the efficacy
of the mechanism in a hybrid cloud environment. Be-
sides that, we also intend to improve the performance
of the proposed mechanism by updating the historical
information as well as by deriving criteria for selecting
obsolete information to be deleted from the database in
order to maintain the scalability of the procedure.
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