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Abstract— Automatic synthesis of digital circuits has played a
key role in obtaining high-performance designs. While consid-
erable work has been done in the past, emerging device tech-
nologies call for a need to re-examine the synthesis approaches,
so that better circuits that harness the true power of these
technologies can be developed. This paper presents a methodology
for synthesis applicable to devices that support ternary logic.
We present an algorithm for synthesis that combines a geo-
metrical representation with unary operators of multivalued logic.
The geometric representation facilitates scanning appropriately
to obtain simple sum-of-products expressions in terms of unary
operators. An implementation based on Python is described. The
power of the approach lies in its applicability to a wide variety
of circuits. The proposed approach leads to the savings of 26%
and 22% in transistor-count, respectively, for a ternary full-
adder and a ternary content-addressable memory (TCAM) over
the best existing designs. Furthermore, the proposed approach
requires, on an average, less than 10% of the number of the
transistors in comparison with a recent decoder-based design
for various ternary benchmark circuits. Extensive HSPICE
simulation results show roughly 92% reduction in power-delay
product (PDP) for a 12 × 12 TCAM and 60% reduction in PDP
for a 24-ternary digit barrel shifter over recent designs.

Index Terms— Synthesis methodology, ternary logic, ternary
digit (Trit), cube representation, unary operators, emerging
devices.

I. INTRODUCTION

THE automatic synthesis of digital circuits meeting various
design objectives has been actively pursued during the

last few decades. Several synthesis tools have been developed
that can transform high level descriptions into logic designs
while also incorporating ways to decrease circuit area and
delay. These tools have helped accelerate the development of
application-specific integrated circuits. They have also played
an important role in general-purpose processor designs [1].

However, emerging device technologies present new oppor-
tunities for a relook at the synthesis approaches since these
technologies often have special characteristics. Some are based
on new computational paradigms [2] while others support new
device models [3], [4]. Existing software tools, in general,
either do not have features for handling these technolo-
gies or may not take advantage of the special characteristics
to output efficient circuit designs.
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Our interest in this paper is on a synthesis methodology for
devices that support multivalued logic. Considerable research
has been done on multivalued logic during the last few
decades [5]–[8]. A recent tutorial [9] on multivalued logic
captures the various aspects of current interest to the cir-
cuits community. Multivalued logic offers several advantages.
In particular, as the radix for computation increases, the
interconnection complexity is reduced since more information
is provided per line. Also, circuit-level benefits exist. For
instance, 14-bit binary addition can be done (roughly) by
a 9-trit adder. However, the non-availability of appropriate
devices to realize ternary and other multivalued logic systems
has for long remained a concern [10] but the emergence of
several new device technologies [3], [11], [12] has led to
renewed interest in ternary and quaternary logic in particular.
Synthesis techniques are still at an early stage and as observed
in [13], novel logic synthesis methods for emerging devices
would help generate better circuits and facilitate exploiting the
true power of these technologies.

We develop a synthesis technique applicable to devices
such as quantum dot gate field effect transistor (qFET) [3],
carbon nanotube FET (CNTFET) [11] and finFET [12] that
support ternary logic. Research on ternary function minimiza-
tion has been pursued as early as 1968 [14]. A graphical
approach for three variables based on a ternary cube is reported
in [14] where the author also presents algebraic relationships
to facilitate minimization of functions of four (or more)
variables. However, the focus in [14] is only on function
minimization and not on the circuit realization. There are also
prior efforts on design of basic ternary arithmetic circuits.
Halpern and Yoeli [15] present details of a ternary full-
adder while ternary memory units have been studied in [16].
An approach for computer minimization of multi-valued
switching functions is reported in [17]. A theorem-proving
based synthesis procedure for combinational logic is described
in [18]. An algorithm called KUAI-EXACT is reported for
multi-valued logic minimization in [19]. Wang et al. [20]
present the notion of algebraic division for multi-level syn-
thesis of multi-valued logic circuits. Recently, a universal set
of multivalued logic gates has been proposed [21]. Transistor-
level designs for specific operations in the ternary setting
have been briefly explored. Mateo and Rubio [22] present the
design of a 5 × 5 trit Wallace-tree based multiplier in CMOS.
Ternary single digit addition in the context of CNTFET-based
realization has been studied in [23]–[26]. Dedicated synthesis
methodologies for ternary logic directed towards transistor-
count reduction for different types of circuits, however, appear
to be scarce.
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The proposed synthesis procedure works in two stages.
In the first stage, we develop an algorithm to express a given
ternary function in terms of (of a small number of) unary
operators of multivalued logic [27]. The output in terms of
unary operators is appropriate across technologies that support
ternary logic. In the second stage, we take advantage of device-
specific properties (and in particular, the relationship between
unary operators and transistor count) and get a low-transistor
count design for the technology.

While there are some prior efforts on utilizing unary oper-
ators for adder designs [25], [28], their potential is yet to
be fully explored. The work described here is motivated by
the cube representation in [14]. We combine unary operators
with the cube representation to arrive at a synthesis procedure.
In particular, we develop expressions for various ternary
functions of two and three variables in terms of unary opera-
tors. One or more layers (some layers constitute faces) of the
cube participate in the synthesis process and our procedure
determines an appropriate direction of ‘scan’ of the layers
for ternary functions of two variables. Ternary functions of
three (and more) variables are handled by a decomposition
procedure. The notion of decomposition itself is not new.
Early work in the context of programmable logic array-based
synthesis is reported in [29]. We present an algorithm for
decomposition of an n-variable ternary function. We then
present an algorithm for transistor-level synthesis in terms of
unary operators and apply the algorithm to various types of
circuits. We have developed a synthesis tool in Python that
takes as input a truth table and outputs a sum-of-products
expression in terms of unary operators. This can be further
optimized based on the exact realization technique adopted
(as shown in section V). The proposed approach is applicable
to a wide variety of circuits and handles a large number of
variables.

We present case studies for the proposed synthesis
methodology in CNTFET technology. CNTFETs provide the
possibility of realizing two distinct threshold voltages merely
by use of different diameters of the carbon nanotube [23].
We present efficient CNTFET-based circuits for realization of
select unary operators. The operators are then used to obtain
ternary multiplexer-based designs of various circuits. Based
on these designs, a ternary full-adder is developed. This is
followed by design of a ternary barrel shifter to establish the
usefulness of our approach for circuits with a large number
of inputs. The performance of the proposed approach is also
studied for various ternary benchmark circuits presented in
[8]. We also investigate design of a CNTFET-based ternary
content addressable memory (CAM). Ternary CAMs have
been studied recently in the context of network search engines
[30] and the complexity in terms of transistor-count has been
of interest.

Comparative studies with state-of-the art ternary circuits
indicate that the methodology proposed is very promising. The
approach leads to a reduction of 26% in transistor-count for a
ternary full-adder over the design in [26]. Further, the proposed
ternary CAM requires 22% fewer transistors than the design
in [31]. Also, a 24-trit barrel shifter here requires 12% fewer
transistors than the shifter described in [3]. Further, the pro-

Fig. 1. Three-input function shown via a cube; here 000 corresponds to
c0b0a0; the black, blue and red colored squares correspond to c = 0, 1
and 2 respectively.

posed approach requires, on an average, less than 10% of the
number of the transistors in comparison to a prior decoder-
based design [25] for various ternary benchmark circuits.

Comparisons of transistor counts with CMOS-based binary
logic designs are also encouraging. In particular, a pro-
posed (27:3) priority encoder takes about 35% transistors
in comparison to an equivalent binary priority encoder [32]
while the proposed ternary CAM takes about 86% of the
transistors of an equivalent binary design [31]. In addi-
tion, detailed HSPICE simulations using the MOSFET-like
CNTFET library described in [4] reveal that the proposed
ternary full-adder and ternary CAM lead to savings in power-
delay product (PDP) of approximately 64% and 94% over the
designs in [26] and [31] respectively. In addition, the proposed
ternary barrel shifter (24-trit) has a PDP that is approximately
40% of that of the shifter design in [3].

II. PRELIMINARIES

A geometric interpretation of ternary functions can be
obtained using the cube structure [14] shown in Fig. 1. Layers
of the cube may correspond to faces or entities at unit-distance
from the faces. There are 33 (or 27) distinct minterms for
ternary functions of three ternary variables, namely a, b and c
and these are depicted in Fig. 1. The cube representation is
useful for reducing ternary functions of three variables. For
example, consider the function given by a0 b0 c0+a1 b0 c0+
a1 b0 c2+a2 b0 c0+a2 b1 c1+a1 b1 c2+a0 b2 c1+a1 b2 c1+
a1 b2 c2 + a2 b2 c1 + a2 b0 c1. By inspection of the cube,
we note that the function reduces to a0 c0 + b2 c1 + a1 c2.
Fig. 1 shows in green color the “lines” that are relevant for
the reduction.

Unary operators play a valuable role in digital design. There
are several (27) unary operators in the ternary case [27].
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TABLE I

TRUTH TABLE OF THE UNARY OPERATORS

TABLE II

RELATIONS BETWEEN UNARY OPERATORS

The choice in Table I is motivated by the following. A0, A1
and A2 are used in [14] while AP and AN are the positive
and negative ternary inverters discussed in [16]. In addition,
we have cycle operators A1 and A2 and the complement of A.
Table II lists the various relationships among the operators.
It is conventional to specify ternary functions in terms of the
min operator [25]. For example, F = 1 ·a1b1+2 ·a2b1 denotes
a ternary function with the prefixes 1 and 2 indicating that we
are operating in ternary. This notation will be used throughout
the paper.

III. KEY IDEAS IN THE PROPOSED SYNTHESIS

METHODOLOGY

The proposed synthesis technique uses the graphical three-
dimensional representation of ternary variables [14] shown
in Fig. 1. We derive a set of results that will permit us to
develop a procedure that can be automated for ternary logic
synthesis.

We seek a sum-of-products expression with few terms (each
of which contains a unary operator from the list in Table I).
One approach is to introduce the unary operators one by one
and check. However, to reduce complexity, it is advantageous
to introduce the operators in a specific order. The order is
identified by the representation in Fig. 1. We begin with
‘scanning-related’ results for the case of two-variable ternary
functions.

A. The Case of Two Variables

Fig. 2 represents one layer of the cube (Fig. 1) for han-
dling two-variable functions. Three results pertaining to the

Fig. 2. One layer of the cube in Fig. 1 for handling two-variable functions.

Fig. 3. (a) Scenario to select unary operators along horizontal direction
(b) Scenario to select unary operators along vertical direction.

graphical representation are presented via Propositions 1, 2
and 3. The proofs of these are given in the Appendix.

Proposition 1: Given inputs A = a2 a1 a0 and
B = b2 b1 b0, the output in sum-of-products form is given by
F = A or F = B , depending on whether the corresponding
terms in the rows or columns match.

Proposition 2: Consider a layer of the graphical represen-
tation in Fig. 2. Suppose the set of points corresponding
to the ternary function evaluating to zero are along two
horizontal lines. Then, a sum-of-products realization with just
one minterm is obtained by choosing the unary operators along
the horizontal direction.

Remark 1: Fig. 3(a) shows the case corresponding to
Proposition 2. Instead of B , if we had chosen A as the
‘common signal’, it would lead to Equation (1) which involves
extra circuit elements to derive unary operators (1 · B1)
and (B1).

F = 1 · a1b1 + 2 · a2b1

= a0 · 0+ a1 · [0 · b0 + 1 · b1 + 0 · b2]
+ a2 · [0 · b0 + 2 · b1 + 0 · b2]

= a1 · (1 · B1)+ a2 · B1 (1)
Corollary 1: Suppose the set of points corresponding to

the ternary function evaluating to zero are along two vertical
lines. Then, a sum-of-products realization with one minterm
is obtained by choosing the unary operators along the vertical
direction. This is illustrated in Fig. 3 (b).

Proposition 3: Suppose a ternary function evaluates to zero
along the horizontal and vertical directions as shown in Fig. 4.
Then, the reduced sum-of-products expression is obtained by
scanning along both the directions and taking the one with
least complexity.
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Fig. 4. Ternary function evaluating to zero along horizontal and vertical
directions.

Fig. 5. Cube representation of a three variable function xi , i = 0, 1,
2, · · · , 26.

Proposition 4: A ternary logic function in sum-of-products
form with unary operators can be minimized further by using
the properties of the unary operators given in Table II.

Proof: We show this via an illustration. Several other
possibilities also exist. Consider a ternary logic function Y
given by Equation (2).

Y = B0 · A1 + B1 · A1 + B2 · (1+ A1)

= (B0 + B1) · A1 + B2 · (1+ A1) (2)

Using the property that B0 + B1 = BP and B2 = BP , this
equation can be rewritten as Equation (3).

Y = BP · A1 + BP · (1+ A1)

= (BP + BP) · A1 + B2 · 1
= 2 · A1 + B2 · 1 (3)

Q.E.D.

B. The Case of Three Variables

In this case, we have 27 minterms and any ternary function
can be represented as a sum of these. Denoting the 27 ‘outputs’
by xi , i = 0, 1, · · · , 26, we have the graphical representation
shown in Fig. 5. A three-variable ternary function can be
expressed as a sum-of-product expression by decomposition.
The calculation of decomposition starts by considering one of

Fig. 6. Decomposition of a three-variable function into three layers of
two-variable functions with B as common signal; (a) B = 0, (b) B = 1
and (c) B = 2.

Fig. 7. Decomposition of a three-variable function into three layers of
two-variable functions with C as common signal; (a) C = 0, (b) C = 1
and (c) C = 2.

TABLE III

DEFINITION OF Pi , Qi AND Ri

the three variables as the ‘common signal’ to obtain three sets
of two variable functions. In particular, we have three sets (one
each for A, B and C) where a given set has three layers (for
A = 0, 1, 2; similarly for B and C). Altogether, we have
nine layers of two variable functions. The decomposed two
variable functions are shown along direction B in Fig. 6
and along direction C in Fig. 7. Let Pi denote the sum of
the xi in the decomposed functions along direction C while
Qi and Ri have similar meaning with respect to directions
B and A respectively. The complete list is given in Table III.
We now present three results (as Propositions 5, 6 and 7) on
choosing an appropriate direction for decomposition so that
the number of minterms is small. The proofs of these appear
in the Appendix.

Proposition 5: Consider a three-variable ternary logic func-
tion with output xi , for i = 0, 1, · · · , 26. where the condition
(Q0 = 0|Q1 = 0|Q2 = 0) is satisfied. Then, decomposition
of the three-variable function into two-variable functions along
direction B leads to a sum-of-products expression with only
six minterms.

Remark 2: Proposition 5 suggests that decomposition along
other directions is not advantageous for the case specified
(Q0 = 0|Q1 = 0|Q2 = 0). For instance, the decompo-
sition along direction A leads to a function of the form
a0· f0(B, C)+a1· f1(B, C)+a2 · f2(B, C), where f0, f1 and f2
are sum-of-products of two-variable functions decomposed
along A = 0, 1, 2 respectively. This results in a sum-of-
products expression with nine minterms.
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Fig. 8. Cube representation of a three variable function with some elements
equal to zero.

Corollary 2: Proposition 5 can be extended to other cases
and the direction X to be chosen (to get six minterms) is given
by Equation (4).

i f (P0 = 0|P1 = 0|P2 = 0), then X = C

i f (R0 = 0|R1 = 0|R2 = 0), then X = A (4)

Proposition 6: Consider a three-variable ternary logic func-
tion with output xi , for i = 0, 1, · · · , 26, where the condition
(Q0 + Q1 = 0|Q1 + Q2 = 0|Q2 + Q0 = 0) is satisfied.
Then, the decomposition of the three-variable function along
direction B leads to a sum-of-products expression with just
three minterms.

Corollary 3: Proposition 6 can be applied in a similar
fashion to other cases. The direction X to be chosen to obtain
three minterms is given by Equation (5)

i f (P0 + P1 = 0|P1 + P2 = 0|P2 + P0 = 0), then X = C

i f (R0 + R1 = 0|R1 + R2 = 0|R2 + R0 = 0), then X = A

(5)

Proposition 7: Consider a three variable ternary logic func-
tion. Suppose the elements along a direction are the same
(as shown in Fig. 10), then decomposition of the function
along direction B (or C) leads to a sum-of-products expression
with just three minterms.

Corollary 4: Analogous to Proposition 7, when the
elements along the horizontal direction are the same as shown
in Fig. 9, we can decompose along direction A (or C) as
shown in Fig. 11. This leads to layers of two-variable functions
with a final sum-of-product expression containing just three
minterms.

Remark 3: Propositions 5 and 6 can be extended to check
for a layer with complete 1’s and 2’s, which can be writ-
ten directly as F = 1 or F = 2 respectively. Similarly,

Fig. 9. Cube representation of a three-variable function with similar elements
along the vertical direction.

Fig. 10. Cube representation of a three variable function with similar
elements along the horizontal direction.

Fig. 11. Decomposition along direction A of a three-variable function
(in Fig. 9) when the elements along horizontal axis are same; three layers
of A: (a) A = 0, (b) A = 1 (c) A = 2.

Proposition 7 and Corollary 4 can be applied to check simi-
larity between two layers.
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Algorithm 1 Ternary Decomposition

Input: Truth table of the n-variable ternary logic
function as (X = x0, x1, · · · , xm−1) where X is
arranged as per Tables IV and V (and m = 3n).

Output: m
9 two variable layers for an n-variable ternary

function.
1 begin
2 if (

∑(m−1)
i=0 xi = 0) then

3 No decomposition required (since it is a zero
function).

4 else if (A(X, 1) = 1 or A(X, 2) = 2) then
5 No decomposition required (since it is a constant

function).
/* A(X,k) denotes AND of all

elements of X with k */
6 else
7 if C(0,X) or C(1,X) or C(2,X) ≥ m

3 then
/* C(u,X) is count of u in X */

8 for k ← 0 to (n-1) do
9 if

∑
Jk = 0 or

∑
Kk = 0 or

∑
Lk = 0 or

A(Jk, 1) = 1 or A(Kk, 1) = 1 or A(Lk, 1) =
1 or A(Jk, 2) = 2 or A(Kk, 2) =
2 or A(Lk, 2) = 2 then
/* J, K and L are defined

in Tables IV and V */
10 Decompose along the direction of input Ik .
11 else if k=n then
12 Check for symmetry. (S=1)
13 end
14 end
15 if S=1 then
16 for k ← 0 to (n-1) do
17 if C(i, Jk) = C(i, Kk) = C(i, Lk) then
18 Decompose along Ik .
19 Break
20 else if k=n then
21 Decompose along any direction.
22 end
23 end
24 Proceed to step 2 setting n to n − 1 (and repeat until

n = 2).
25 end

C. More Than Three Variables

The approach can be extended to more than three variables.
For example, a five-variable function will be decomposed
into multiple four-variable functions. Each four-variable func-
tion will be decomposed into several three-variable functions
and so on. The detailed algorithm for decomposition of an
n-variable function is presented in the next section. It is based
on Propositions 5, 6, 7 and related corollaries. For a given
input Ii , the decomposition is into three layers each with Ii−1
number of inputs and these are denoted as Ji , Ki and Li as
given in Tables IV and V.

Algorithm 2 SOP Unary Operator Synthesis

Input: Truth table of the n-variable ternary logic
function (x0, x1, · · · , xm−1).

Output: Function (Y ) expressed in terms of sum of
products of input and unary operators of the
inputs.

1 begin
2 Decompose the n-variable function as per

Algorithm 1 and get m
9 two-variable layers.

3 for k ← 1 to m
9 do

4 Get the values of Hi and Vi as per Table VI
5 if (

∑8
i=0 xi = 0) then

6 F = 0
7 else
8 if Proposition 1 is applicable then
9 Write output as identity function (F = A) or

as a constant function (F = 1 or F = 2).
10 end
11 if ((H0 = 0 or H1 = 0 or H2 = 0) and

(V0 = 0 or V1 = 0 or V2 = 0)) then
12 if

(H0+H1 = 0 or H1+H2 = 0 or H2+H0 = 0)
then

13 choose the unary operators along the
horizontal direction (Proposition 2).

14 else if
(V0+ V1 = 0 or V1+ V2 = 0 or V2+ V0 = 0)
then

15 choose the unary operators along the
vertical direction (Corollary 1).

16 else
17 Scan in both horizontal and vertical

directions (Proposition 3).
18 end
19 else
20 Scan in both horizontal and vertical

directions (Proposition 3).
21 end
22 end
23 end
24 Compute the complexity of all layers and choose the

best one.
25 Check if further reduction is possible using

Proposition 4.
26 end

IV. PROPOSED ALGORITHMS

In this section, we present two algorithms (named
Algorithm 1 and Algorithm 2). Algorithm 1 calculates
a ternary decomposition of an n-variable function while
Algorithm 2 generates a sum-of-products expression in terms
of unary operators.

A. Overview of the Algorithms

Algorithm 1 takes as input an n-variable function and
ascertains first that a decomposition is required and then
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TABLE IV

DEFINITION OF fx

TABLE V

Ii , Ji , Ki AND Li DEFINITIONS FOR i = n, n − 1, · · · , 2

Fig. 12. One layer of the cube (X0, X1, · · · , X8) for inputs
in 00, 01, 02, · · · , 21, 22.

TABLE VI

DEFINITIONS OF Hi AND Vi

determines the direction of decomposition. The process is
repeated until n becomes 2. Algorithm 2 considers one layer
of a cube (as shown in Figures 6 and 7). It starts by assigning
the truth table of one layer xi (for i = 0, 1, · · · , 8) as shown
in Fig. 12 to the horizontal (H0, H1 and H2) and vertical
signals (V0, V1 and V2) as defined in Table VI. Several cases
are identified in the algorithm. These are (i) checking if the
function is a constant (0, 1 or 2) or identity (ii) checking if two
horizontal (and vertical) signals are zero and (iii) checking if
either horizontal or vertical signal is zero.

B. Illustration for the Proposed Algorithms

A ternary 9-to-2 priority encoder is considered to illustrate
the applicability of the proposed synthesis methodology to
a large number of inputs. The truth table for the ternary
9-to-2 priority encoder is given in Table VII (Only a few
cases are listed due to space constraints). The first step is
decomposition of the n-variable function as per Algorithm 1.
First, the algorithm leads to three 8-variable functions. Next,
the three 8-variable functions are decomposed into nine
7-variable functions and so on. This decomposition continues

TABLE VII

TRUTH TABLE OF A 9:2 PRIORITY ENCODER

TABLE VIII

EXPRESSIONS FOR 9-TO-2 PRIORITY ENCODER OUTPUTS (Q0 AND Q1);
Mi IS THE INPUT TO THE ENCODER FOR i = 0, 1, · · · , 8; Mi2 AND

MiP ARE THE UNARY OPERATORS AS DEFINED IN TABLE I

till two-variable functions m
9 (or 37 two-variable layers) for

each output are produced. Now we proceed with the applica-
tion of Algorithm 2 to obtain a sum-of-products expression
in terms of unary operators. The resulting equations for the
output of the 9 : 2 priority encoder are given in Table VIII.
A ternary multiplexer based implementation is shown
in Fig. 14 for Q0. Results of implementation of a 27:3 priority
encoder are presented (and compared) in Table XX.

V. APPLICATIONS TO LOGIC SYNTHESIS IN AN EMERGING

FET-BASED TECHNOLOGY

In this section, we present the applications of the proposed
algorithm to synthesis of circuits made from carbon nanotube
FET (CNTFET), an emerging device technology. It is worth
noting that the algorithm as such is applicable to other tech-
nologies such as quantum dot gate FET [3] and finFET [12]
that support ternary logic.

CNTFET exhibits ternary behaviour as indicated earlier.
Due to space reasons, we omit the details and refer the reader
to [23], [25], and [28]. In essence, the ternary behaviour is
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Fig. 13. CNTFET-based realization of unary operators: (a) AP (b) AN (c) A1 (d) A2 (e) A (f) A0 (g) A1 (h) A2; The values 1.487, 1.018 and 0.783 correspond
to diameters of the carbon nanotube and lead to ternary behaviour [23].

Fig. 14. 9:2 Ternary Priority Encoder Output Q0.

related to the chirality setting, denoted by a vector (m, n).
Commonly-used [25], [28] chirality vectors are (19,0), (13,0)
and (10,0) and they correspond to diameters (of the carbon
nanotube) of 1.487 nm, 1.018 nm and 0.783 nm respectively.
The CNTFET-based circuits for the unary operators (given
in Table I) are shown in Fig. 13. A CNTFET-based realization
of the ternary 3×1 multiplexer is shown in Fig. 15.

A. Ternary Full Adder

Consider a ternary full adder circuit which has three inputs
A, B and C and two outputs namely, sum S and carry Cout .
Fig. 16 depicts the sum and carry using the cube representa-
tion. Applying the proposed algorithms, we have Equations (6)
and (7). The multiplexer-based realization of the ternary full
adder is shown in Fig. 17.

sum = c0[b0 · A + b1 · A1 + b2 · A2]
+ c1[b0 · A1 + b1 · A2 + b2 · A]
+ c2[b0 · A2 + b1 · A + b2 · A1] (6)

carry = c0[b0 · 0+ b1 · (1 · AP)+ b2 · (1 · AN )]
+ c1[b0 · (1 · AP)+ b1 · (1 · AN )+ b2 · 1]
+ c2[b0 · (1 · AN )+ b1 · 1+ b2(1+ AP)] (7)

Fig. 15. CNTFET-based 3×1 Ternary Multiplexer.

Fig. 16. Ternary Full-Adder cube representation (a) sum and (b) carry;
� and � represent 1 and 2 respectively while a blank represents a zero.

Remark 4: The proposed unary operator-based ternary full-
adder takes 105 CNTFETs. An alternative is using decoders
and encoders as described in [25] and requires 318 CNTFETs.

B. Ternary Barrel Shifter

A barrel shifter completes multiple shifts with the same
delay. The proposed ternary barrel shifter performs logical left
shift depending on the signal S1S0. The truth table of the
shifter is given in Table IX and the equations for the output
of a 6-trit are given in Table X. The multiplexer-based barrel
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Fig. 17. Ternary MUX-based Full-Adder Using Unary Operators.

TABLE IX

TRUTH TABLE OF A 6-TRIT BARREL SHIFTER

TABLE X

EQUATIONS FOR 6-TRIT SHIFTER WHERE S1 AND S0 ARE SELECT
SIGNALS, D0, D1 , · · · , D5 ARE DATA AND Y0, Y1, · · · , Y5

ARE THE OUTPUTS

Fig. 18. 6-trit Barrel Shifter with S1 and S0 are select signals,
D0, D1, · · · , D5 are data and Y0, Y1, · · · , Y5 are the outputs.

shifter is shown in Fig. 18. A feature of the circuit is the use
of a ternary 2× 1 multiplexer for some outputs of the shifter.
The shifter can be extended to operate as a universal shifter
(to perform left or right shift depending on a shift signal).

Fig. 19. CNTFET-based Ternary Content Addressable Memory (TCAM) cell;
SL and M L stand for search line and match line respectively; W L and M L
are two-valued while W B and SL are three-valued; Memory cell is indicated
via a dashed box.

Remark 5: The shifter presented in [3] employs one
decoder and three 3 × 1 multiplexers. Each decoder takes
16 CNTFETs while each multiplexer takes 6 CNTFETs.
Altogether, the 3-trit shifter requires 34 CNTFETs while the
proposed shifter takes 26 CNTFETs. The benefits for larger
size barrel shifters can be seen from Table XIV.

C. Ternary CAM

Content accessible memories (CAMs) are expected to
become a key part of the overall monolithic implementa-
tion [33] of various circuits. A multi-valued memory cell can
reduce the number of transistors as well as the interconnections
while performing more complex operations than traditional
binary memory. The proposed CNTFET-based ternary content
addressable memory cell (TCAM) is presented in Fig. 19.
The synthesis methodology facilitates extraction of output by
declaring a match as per Equation (8).

M L = D0 · SL P + D1 · 2 + D2 · SL N (8)

The manner in which the proposed TCAM cell works is
expressed by Table XI where SL is the search line and M L is
the match line. The data to be searched is placed on the search
line (SL) and when the data matches, the output is obtained
through the match line (M L). The data in the search line is
compared with the data stored (D) in the memory cell.

Remark 6: It is assumed that the data is already prestored
in the TCAM cell. The proposed synthesis methodology
identifies the appropriate unary operators to facilitate search
and match of data. The TCAM circuit presented in [31] uses
standard ternary inverters (STIs) while the proposed circuit
depicted in Fig. 19 involves a combination of binary and
ternary inverters requiring fewer transistors. The use of two
inverters in the feedback circuit can be justified as follows.
The output of the TCAM (ML) as shown in Table XI is (logic)
2 when either the search line (SL) or data (D) is 1. When the
data fed to the memory cell is 1, (D = 1), the outputs at
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TABLE XI

TRUTH TABLE OF A TERNARY CAM; D, SL AND M L ARE DATA STORED,
SEARCH LINE AND MATCHED LINE RESPECTIVELY

TABLE XII

TERNARY BENCHMARK CIRCUITS BASED ON [8]; VALUES OF i ≥ 8
(AND ≤ 14) HAVE BEEN CONSIDERED

the positive ternary inverter (D) and the inverter that follows
are 2 and 0 respectively (in the feedback loop). The second
transmission gate in the feedback loop passes the logic low (0)
to the node D, which results in reduction in the voltage at D
from logic 1 to a smaller value (that lies between 0 and 1).
Hence, the voltage at D is less than the threshold voltage of
the n-type CNTFETs (of the ML circuit), which causes the
match line output to be high.

As observed from Fig. 19, the proposed TCAM cell
takes 18 CNTFETs. The TCAM presented in [31] takes
23 CNTFETs hence, we obtain 22% savings over the existing
design.

D. Multi-Input Ternary Benchmark Functions

We have also considered various benchmark functions [8]
for testing the efficiency of our synthesis methodology.
The functions considered are presented in Table XII. These
include (i) sumi to sum i ternary variables (ii) prodi to find
the product of i ternary variables (iii) avgi to calculate the
average of i ternary variables (iv) ncyr which corresponds to
a ternary sum-of-product expression of n variables taken r at
a time and (v) counteri which counts number of 1’s and 2’s in
a given i trit number. For implementation purposes, we have
chosen i ≥ 8 to gather information on the performance of the
proposed methodology for large number of variables. Further
n and r in ncyr have been chosen such that n ≥ 8 and r ≥ 5.

TABLE XIII

COMPARISON OF TRANSISTOR-COUNT OF TERNARY FULL ADDER AND
TERNARY CONTENT ADDRESSABLE MEMORY (TCAM) CELL

TABLE XIV

TRANSISTOR-COUNT COMPARISON OF BARREL

SHIFTER FOR VARIOUS SIZES

TABLE XV

TRANSISTOR-COUNT COMPARISON OF TERNARY

CAM (SIZE IS IN rows × columns)

VI. IMPLEMENTATION AND COMPARISONS

A. Python Implementation and Transistor Count

The proposed algorithms have been implemented in
Scientific PYthon Development EnviRonment (Spyder) using
Python 2.7. Python has been chosen since it has powerful but
simple syntax and provides a rich set of features for rapid
application development. The tool developed takes a truth
table as input and outputs the sum-of-products expressions
along with the transistor count. We give below the details of
transistor-count for various circuits. The complexity details
of the proposed ternary full adder and the TCAM cell are
presented in Table XIII. The proposed full adder design
leads to CNTFET savings of 66% and 26% respectively over
the designs in [25] and [26]. Further, the proposed TCAM
cell leads to 22% savings over the design in [31] with
respect to transistor count. For the complete TCAM-based
search operation, the benefits of the proposed design are seen
from Table XV. The proposed design leads to approximately
15% savings in the CNTFET count. Table XIV compares the
proposed shifter with the design in [3]. The savings using
the proposed methodology are higher for small size shifters.
Python code has also been developed to study the perfor-
mance of the proposed methodology on ternary benchmark
circuits [8]. The results of transistor count are presented
in Table XVI along with comparisons with an approach based
on decoders in [25]. (the decoder-based designs in [25] are
for single trit adder and multiplier and we have developed
Python code for getting transistor counts for larger-size circuits
corresponding to the ternary benchmarks.)
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TABLE XVI

PERFORMANCE OF PROPOSED APPROACH ON TERNARY BENCHMARK
CIRCUITS AND TRANSISTOR-COUNT COMPARISONS (DATA

FOR THE APPROACH IN [25] WERE OBTAINED

BASED ON OUR PYTHON IMPLEMENTATION)

B. HSPICE Implementation for Power-Delay Product

Performance with respect to other metrics has been
determined via SPICE simulations using the MOSFET-like
CNTFET library in [4]. Tables XVII and XVIII report the
comparisons for the ternary adder and TCAM with respect to
worst-case delay, average power and power delay product.

Fig. 20 reports the comparison of the power-delay product
of the proposed barrel shifter for various sizes. For a 24-trit
barrel shifter, the PDP of the proposed approach is only 40 %
of that of the existing design [3].

Figures 21 (a) and (b) present the comparison of the PDP
of a TCAM (search operation) for load capacitances of 2 f F
and 3 f F respectively. The TCAM cell in [31] is used to
derive an m × n memory architecture. The plot reveals that
the proposed TCAM architecture takes 7% of the PDP of the
design derived from [31]. The power-delay product values for
various benchmark circuits are given in Table XIX.

C. Area Comparison of Binary and Ternary Circuits

The ternary circuits synthesized using the proposed method-
ology have also been compared in terms of transistor count
with the corresponding binary equivalent. The results are

TABLE XVII

COMPARISON OF TERNARY FULL-ADDER DESIGNS
WITH DIFFERENT DRIVE STRENGTHS

TABLE XVIII

COMPARISON OF TCAM DESIGNS WITH DIFFERENT DRIVE STRENGTHS

Fig. 20. Comparison of power-delay product of ternary barrel shifter for
several capacitances; K C J 2013 corresponds to [3].

Fig. 21. Comparison of power-delay product of ternary content addressable
memory for load capacitance (a) 2 f F (b) 3 f F; NY 2012 corresponds to [31];
CAM sizes are 3 × 3, 6 × 6, 9 × 9 and 12 × 12.

presented in Table XX. We observe that the proposed ternary
barrel shifter requires only about 46% transistors in compar-
ison to the corresponding binary design in [35]. The design
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TABLE XIX

POWER-DELAY PRODUCT FOR BENCHMARK CIRCUITS [8]
USING THE PROPOSED APPROACH

in [35] is based on an array of transmission gates, each of
which requires two transistors. Consequently, a 32-bit shifter
takes 2112 transistors (including a few transistors for the
control signals). On the other hand, the proposed equivalent
ternary design (24-trit) uses a combination of 2-to-1 and
3-to-1 multiplexers. Each of these multiplexers needs a small
number of transistors by careful selection of unary operators.
Further, the control circuitry is also simplified leading to
considerable savings. A similar benefit is observed with the
proposed ternary priority encoder (discussed in section IV-B).
The 32-bit design presented in [32] uses several 4-input,
3-input and 2-input AND and OR gates and has a total
requirement of 1106 transistors while, our equivalent 27:3
ternary priority encoder design is based on Propositions 4
and 7, and uses primarily 2-to-1 ternary multiplexers (each
of which requires only two transmission gates). Careful selec-
tion of the unary operators also leads to fewer multiplexers
leading to a total of 375 transistors (approximately 34% of
the requirement in [32]). In addition, the proposed ternary
CAM requires about 86 % (of transistors) of the binary CAM
reported in [31] and this can be attributed to the use of the
positive and negative ternary inverters (with lower transistor
requirement than the STI). The binary CAM of size 32 × 32
requires 1024 CAM cells (where each cell uses 10 transistors)
and 81 inverters (each requiring two transistors) leading to a
total requirement of 10368 transistors. The equivalent TCAM
requires only 729 cells (with each cell requiring 12 transistors)
and 64 inverters. Consequently, we have an overall transistor
requirement of 8910.

The proposed ternary full-adder requires considerably more
transistors than a binary full-adder since the latter is optimized
with respect to transmission gates. However, the difference in
transistor counts becomes smaller as we consider large circuits.
For example, sum4 (sum of 4 ternary variables) takes roughly
1.9 times more transistors for ternary (than for binary) and
further, there are advantages with respect to the interconnect
requirement for the proposed ternary design (Table XX).

TABLE XX

COMPARISON OF TERNARY AND BINARY CIRCUITS; sum4 CORRESPONDS
TO THE SUM OF FOUR TERNARY VARIABLES

VII. CONCLUSIONS

We have presented an approach for ternary logic synthesis in
this paper with a view to application to emerging device tech-
nologies. The proposed algorithms are simple to implement.
Python code has been developed and samples are provided at
the URL http://www.ee.iitm.ac.in/∼sridhara/synthesis. Appli-
cations of the proposed approach for synthesis of CNTFET-
based circuits are presented. The proposed approach lends
itself readily to adaptation to other device technologies.

APPENDIX

PROOFS OF PROPOSITIONS

Proof of Proposition 1: This result can be established
with reference to Fig. 1. Suppose the entries in the columns
match. Then, we have the arrangement in Fig. 22 (a). The
ternary equations can then be written as (9). Simplification
and rewriting leads to Equation (10).

F = 1 · a1b0 + 2 · a2b0 + 1 · a1b1 + 2 · a2b1

+1 · a1b2 + 2 · a2b2 (9)

= A (10)

Along similar lines, we can show that the output is B when
the entries in the rows match (as in Fig. 22 (b)). Q.E.D.

Proof of Proposition 2: We consider, without loss of gen-
erality, the ternary function F = 1 · a1b1 + 2 · a2b1. F can be
expressed (by choosing B as the ‘common signal’) as given
by Equation (11).

F = 1 · a1b1 + 2 · a2b1

= b0 · 0 + b1 · [0 · a0 + 1 · a1 + 2 · a2] + b2 · 0
= b0 · 0 + b1 · A + b2 · 0
= b1 · A (11)
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Fig. 22. (a) F = A (b) F = B .

Fig. 23. Ternary function evaluating to zero along horizontal and vertical
directions.

Fig. 24. Decomposition of a three-variable function into three layers of
two-variable functions with B as common signal; (a) B = 0, (b) B = 1
and (c) B = 2.

The proof for obtaining a unary-operator based sum-of-
products expression for functions F = 1 · a1 b0 + 2 · a2b0
and F = 1 · a1b2 + 2 · a2b2 is similar and hence omitted.
Q.E.D.

Proof of Proposition 3: When a ternary function evaluates
to zero along the horizontal and vertical directions, scanning
along either of the two directions may lead to expressions
with identical number of terms. Hence, the one with lower
complexity (lower transistor-count) is determined based on
device-specific information. For instance, in Fig. 23, scanning
along the vertical direction (B) yields a1 · (1 ·B1)+a2 · (BN ).
while scanning along the horizontal direction (A) yields b1 ·
A + b2 · AP with the same number of terms. Q.E.D

Proof of Proposition 5: We consider the case of Q0 = 0 (the
proof for Q1 = 0 and Q2 = 0 is similar). Q0 = 0 corresponds
to the cube representation shown in Fig. 8. The decomposition
of the ternary function along direction B , as shown in Fig. 24,
will have only two layers of two-variable functions (in terms
of A and C) corresponding to B = 1 and B = 2. We can
therefore express as “b1 · f1(A, C)+ b2 · f2(A, C)” where f1
and f2 are two-variable functions (each with three minterms)
corresponding to B = 1 and B = 2 respectively. Hence,
we have a sum-of-products expression with just six minterms.
Q.E.D.

Proof of Proposition 6: We prove this for Q0 + Q1 = 0
(the arguments for Q1 + Q2 = 0 as well as Q2 + Q0 = 0
are similar). The decomposition along direction B results in
a function f2(A, C) (with three minterms) for B = 2 (and
0 for B = 0, 1). Hence, the final expression can be written as
b2 · f2(A, C). Q.E.D.

Fig. 25. Decomposition (along direction B) of three-variable function
(in Fig. 10) when the elements along vertical axis are the same; three layers
of B: (a) B = 0, (b) B = 1 (c) B = 2.

Proof of Proposition 7: Decomposition along the direction
B gives the three layers shown in Fig. 25. The final expression
can be written as Equation (12).

F = b0 · f0(A, C)+ b1 · f1(A, C)+ b2 · f2(A, C) (12)

These two layers in Figures 10 (a) and (b) can be represented
with the same function. Equation (12) can then be simplified
to (13)

F = f0(A, C) · (b0 + b1 + b2)

F = f0(A, C) (13)

Further, this process of decomposition leads to an expression
which is independent of the third variable (B) and the sum-of-
products expression has three minterms. Hence, we have the
result. Q.E.D.
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