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Universal Approximation Capability of Broad
Learning System and Its Structural Variations

C. L. Philip Chen , Fellow, IEEE, Zhulin Liu, and Shuang Feng

Abstract— After a very fast and efficient discriminative broad
learning system (BLS) that takes advantage of flatted structure
and incremental learning has been developed, here, a mathe-
matical proof of the universal approximation property of BLS
is provided. In addition, the framework of several BLS variants
with their mathematical modeling is given. The variations include
cascade, recurrent, and broad–deep combination structures.
From the experimental results, the BLS and its variations outper-
form several exist learning algorithms on regression performance
over function approximation, time series prediction, and face
recognition databases. In addition, experiments on the extremely
challenging data set, such as MS-Celeb-1M, are given. Compared
with other convolutional networks, the effectiveness and efficiency
of the variants of BLS are demonstrated.

Index Terms— Broad learning system (BLS), deep learning,
face recognition, functional link neural networks (FLNNs), non-
linear function approximation, time-variant big data modeling,
universal approximation.

I. INTRODUCTION

W ITH the revitalizing of the research in artificial intel-
ligence, recently, many machine learning algorithms

that support this development have been introduced viciously.
One of the major contributors is the deep learning algo-
rithm, including both generative learning and discriminative
learning. One representative of deep generative learning is
the restricted Boltzmann machines and its deep model [1].
Another representative discriminative learning is convolutional
neural network (CNN) [2]. These deep learning algorithms and
models and their variants have carved out a research wave in
machine learning for people to follow. The learning algorithms
also have been used in pattern recognition, image recognition,
speech recognition, and video processing applications and
exhibited outstanding performance.
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The CNN structure is a kind of multilayer neural networks
with convolution and pooling operations as feature mapping
that can be considered to have the similar feature extraction
property with properly adjusted weights. One may also con-
sider that the feature mapping portion is a kind of kernel
mappings, in which different kernels may be used to replace
convolution and pooling operators. CNN and its variants have
successfully accomplished a very high recognition rate in
many recognition competitions tested on ImageNet data set.

Although the deep structure has been so powerful, most
networks suffer from time-consuming training process because
complicated structures are involved. Many of the studies
require high-performance computing and powerful facility.
Moreover, this complication makes it so difficult to analyze
the deep structure theoretically that most work spans in turning
the parameters or stacking more layers for better accuracy.

Recently, a very fast and efficient discriminative learning—
broad learning system (BLS)—has been developed by
Chen and Liu [3]. Without stacking the layer-structure,
the designed neural networks expand the neural nodes broadly
and update the weights of the neural networks incremen-
tally when additional nodes are needed and when the input
data entering to the neural networks continuously. Therefore,
the BLS structure is perfectly suitable for modeling and learn-
ing in a time-variant big data environment. It is also indicated
that BLS significantly outperforms existing deep structures
in learning accuracy and generalization ability in Modified
National Institute of Standards and Technology (MNIST)
and handwriting recognition and New York University object
recognition benchmark (NORB) database [4].

In addition to BLS fine discriminative capability in
classification and recognition, here, a mathematical proof of
the universal approximation property of BLS is provided.
Based on the theorem, it is stated that BLS is a nonlinear
function approximator. With this, the regression performance
of BLS is compared with support vector machine (SVM),
least squared SVM (LSSVM), and extreme learning machine
(ELM) on several benchmarked data sets on function
approximation, time series prediction, and face recognition.

This paper also discusses several BLS variants, where
different weight connections are established within the fea-
ture mapping nodes, within enhancement nodes and between
feature nodes and enhancement nodes. Mathematical modeling
of these variants is also given. It is hoped that these variant
architectures can be used for future research.

In the following, the preliminary knowledge for this
paper is introduced followed by the proof of the universal
approximation property of the BLS and followed by variant
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Fig. 1. Framework of a typical BLS.

BLS architectures and experiments in function approxima-
tion, time series prediction, and face recognition benchmarks.
To demonstrate the advantages of variants of BLS, experiments
on the typically large-scale data sets are followed. Among
them, the most challenging one is the MS-Celeb-1M data set.
The results prove that the cascade convolution feature mapping
nodes BLS outperforms other convolutional networks.

II. PRELIMINARIES

A. Functional Link Neural Networks
The functional link neural network (FLNN) proposed by

Klassen et al. [5] is a variant of the higher order neural net-
work without hidden units, and it has been further developed
to the random vector functional link network [6]. Different
various improvements and models as well as successful appli-
cations of FLNN are developed due to its universal approx-
imation properties (see [7]–[9]). A comprehensive review of
FLNN can be referred to [10].

Chen [11] and Chen et al. [12] have presented an adap-
tive implementation of the FLNN architecture together with
a supervised learning algorithm named rank-expansion with
instant learning. The advantage of this rapid algorithm is that
it can learn the weights in a one-shot training phase without
iteratively updating the parameters. In addition, a fast learning
algorithm is proposed in [13] to find optimal weights of the
flat neural networks (especially, the functional link network),
which adopts the linear least-square method, and this algorithm
makes it easier to update the weights instantly for incremental
input patterns and enhancement nodes.

B. Broad Learning Systems
The BLS [3] provides an alternative way of learning deep

structures that usually suffer from time-consuming training of
abundant parameters in the filters and layers. The training
process is through incremental learning algorithms for fast
remodeling in broad expansion without a retraining process
if the network deems to be expanded.

The BLS depicted in Fig. 1 is established in the form
of a flat network, where the original inputs are transformed
into random features in “feature nodes” and the structure
is expanded in the wide sense in the “enhancement nodes.”
Specifically, the main character is that in a BLS, the input
data are first transformed into random features by some feature
mappings that are further connected by nonlinear activation
functions to form the enhancement nodes. Then, the random
features (nodes) together with the outputs of the enhancement
layer are connected to the output layer, where this output layer
weights are to be determined by either a fast pseudoinverse of

the system equation or an iterative gradient descent training
algorithm. Incremental learning algorithms are used for a new
input arriving or an expansion of the enhancement nodes.
This characteristic makes the BLS very efficient and much
less time-consuming compared with multilayer perceptron and
deep structures, such as CNN, deep belief networks, deep
Boltzmann machines, stacked auto encoders, and stacked deep
auto encoders.

We will briefly describe the establishment of a typical BLS,
and readers can refer to [3] for details. Given the training
data {X, Ŷ } ∈ R

N×(M+C) and n feature mappings φi , i =
1, 2, . . . , n, then the i th mapped features are

Zi = φi (XWei + βei ), i = 1, 2, . . . , n (1)

where the weights Wei and bias term βei are randomly
generated matrices with the proper dimensions.

We denote Zn � [Z1, Z2, . . . , Zn] as the collection of n
groups of feature nodes. Then, Zn is connected into the layer
of enhancement nodes.

Similarly, we denote the outputs of the j th group of
enhancement nodes by

H j � ξ j (Zn Wh j + βh j ), j = 1, 2, . . . , m (2)

where ξ j is a nonlinear activation function. In addition,
we denote the outputs of the enhancement layer by Hm �
[H1, H2, . . . , Hm ].

For simplicity and without loss of generality, we will omit
the subscripts of the feature mapping φi and the activation
function ξ j in the following part. However, φi can be selected
differently in establishing a model as well as ξ j .

In order to obtain sparse representation of input data, the
randomly initialized weight matrix Wei is fine-tuned by apply-
ing the linear inverse problem (please refer to [3, eq. (4)]).

Therefore, the output Y of a BLS has the following form:
Y = [Z1, Z2, . . . , Zn, H1, H2, . . . , Hm ]Wm (3)

= [Zn, Hm ]Wm

where Wm are the weights connecting the layer of feature
nodes and the layer of enhancement nodes to the output layer,
and Wm � [Zn, Hm ]+Y . Here, Wm can be easily computed
using the ridge regression approximation of pseudoinverse
[Zn, Hm ]+.

C. Incremental Learning Algorithms
for Broad Learning Systems

Three incremental learning algorithms are also devel-
oped for the BLS without retraining the whole model [3],
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Fig. 2. BLS with increment of input variables, feature nodes, and enhancement nodes (red parts).

which deals with three scenarios, including the increments of
enhancement nodes, feature nodes, and input data (see Fig. 2).
We will give a brief description of the three incremental
conditions as follows.

1) Increment of Enhancement Nodes: Suppose that we
expand the BLS by adding p enhancement nodes, and denote
Am � [Zn, Hm ] and

Am+1 � [Am, ξ(Zn Whm+1 + βhm+1)] (4)

where Whm+1 and βhm+1 are randomly generated weights
and bias terms connecting feature nodes to the p additional
enhancement nodes.

Then, the new weights of this incremental BLS can be
calculated by

Wm+1 � (Am+1)+Y =
[

Wm − D BT Y
BT Y

]
(5)

where the pseudoinverse of the new matrix Am+1 is

(Am+1)+ =
[
(Am)+ − D BT

BT

]
(6)

and

BT =
{

C+, if C �= 0

(1 + DT D)−1 DT (Am)+, if C = 0

C = ξ(ZnWhm+1 + βhm+1) − Am D

D = (Am)+ξ(ZnWhm+1 + βhm+1). (7)

We can see from the above-mentioned formulae that it only
needs to compute the pseudoinverse of necessary components
instead of calculating that of the whole Am+1, which generates
the fast learning property of BLS.

2) Increment of Feature Nodes: Sometimes a discriminative
model (shadow or deep) may suffer from insufficient features
that cannot well represent the input data. A traditional solution
for these architectures is to extract more new features by
increasing the number of filters or layers and train the models
from the very beginning, which is very time-consuming,
especially, for some deep models.

However, it is convenient to implement the increment of a
new feature mapping in BLS. The new few mapping nodes can
be easily inserted into the structure and the connection weights
can be easily trained by the incremental learning algorithm
similar to that of adding new above-mentioned enhancement
nodes.

Assume that the initial BLS consists of n groups of feature
nodes and m groups of enhancement nodes, respectively, now,
we consider that the (n+1)th group of feature nodes are added
and denoted by

Zn+1 = φ(XWen+1 + βen+1). (8)

In addition, the output of corresponding enhancement
nodes is

Hexm � [ξ(Zn+1Wex1 +βex1), . . . , ξ(Zn+1Wexm +βexm )] (9)

where Wexi and βexi are randomly generated weights and
bias terms that connect the newly added feature nodes to the
enhancement nodes.

Now, let Am
n+1 � [Am, Zn+1, Hexm ], and we only

have to compute the pseudoinverse of a matrix containing
[Zn+1, Hexm ] to obtain the new weights Wm

n+1 of this incre-
mental BLS. The formulae for Wm

n+1 are similar to (5), so we
omit them here.

3) Increment of Input Data: In some online learning sce-
narios, the training data are keep coming into the system and
we should establish a model that is adaptive to the new data.
A common way for deep models is to retrain them again
with the whole training data. On the contrary, the BLS can
be easily adapted to the new training data by only updating
the corresponding part of weights for the newly added input
samples. See details in the following.

Suppose that {Xa, Ya} denotes the new training data added
to a BLS. The generated feature nodes for Xa are

Zn
a = [φ(XaWe1 + βe1), . . . , φ(Xa Wen + βen )] (10)

and the output matrix of feature and enhancement layers for
the new data are denoted as

Ax �
[
Zn

a , ξ
(
Zn

x Wh1 + βh1

)
, . . . , ξ

(
Zn

x Whm + βhm

)]
. (11)

The weights of this incremental BLS can be updated by

Wm
a = Wm + (

Y T
a − AT

x Wm)
B (12)

where

BT =
{

C+, if C �= 0

(1 + DT D)−1(Am)+ D, if C = 0

C = AT
x − DT Am

DT = AT
x (Am)+. (13)
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Similarly, this incremental training process saves time since
it only computes the pseudoinverse of matrix containing the
new part Ax . This particular scheme is suitable and effective
for system modeling that requires online learning.

III. UNIVERSAL APPROXIMATION PROPERTY OF BLS

We have demonstrated the fine discriminative capability
of BLS in [3] through some representative benchmarks for
classification. We will discuss the universal approximation
property of BLS and prove several theorems in this section.

Similar to the denotations in [3, Th. 1], consider any
continuous function f ∈ C(Id ), which defined on the standard
hypercube Id = [0; 1]d ⊂ R

d , the BLS with nonconstant
bounded feature mapping φ and activation function ξ can
equivalently be denoted as

fwm,n (x) =
n∗k∑
i=1

wiφ(xwei + βei )

+
m∗q∑
j=1

wnk+ j ξ(zwh j + βh j )

=
n∗k∑
i=1

wiφ(xwei + βei )

+
m∗q∑
j=1

wnk+ j ξ(x; {φ,wh j , βh j })

where z = [φ(xwe1 + βe1), . . . , φ(xwenk + βenk )], and

wm,n = (n, m, w1, . . . , wnk+mq ,we1, . . . ,wenk ,wh1,

. . . ,whmq , βe1, . . . , βenk , βh1 , . . . , βhmq )

is the set of overall parameters for the functional link net-
work. Among them, the randomly generated part is denoted
as λm,n = (we1, . . . ,wenk ,wh1, . . . ,whmq , βe1 , . . . , βenk ,
βh1, . . . , βhmq ). Assume that the random variables are defined
on the probability measure μm,n , and notation E is the
expectation with respect to the probability measure. Moreover,
the distance between the approximation function fwm,n and the
function f on the compact set K ⊂ Id can be denoted as

ρK( f, fwm,n ) =
√

E

[∫
K
( f (x) − fwm,n (x))2d x

]
.

Our main result is as follows.
Theorem 1: For any compact set K ⊂ Id and any continuous

function f in C(Id ), there exists a sequence of { fwm,n }
in BLS that is constructed by nonconstant bounded feature
mapping φ and absolutely integrable activation function ξ
(functions on Id , such that

∫
Rd ξ2(x)d x < ∞) and a respective

sequence of probability measures μm,n , such that

lim
m,n→∞ ρK( f, fwm,n ) = 0.

Moreover, the randomly generated parameters λm,n are sam-
ples from the distributions of probability measures μm,n .

Proof: Recall that for function f , the approximation
solution of BLS is the function fwm,n defined earlier. Let
wz = [wz1 , . . . , wznk ] denote the weight matrix connecting

the feature nodes Zn to the output layer, and let wh =
[wh1 , . . . , whmq ] denote the weight matrix connecting the
enhancement nodes Hm to the output layer.

Therefore, for any integer n, define

fwz =
nk∑

i=1

wzi φ(xwei + βei )

where wei , βei , i = 1, . . . , nk, are samples from the given
probability measures. Obviously, the resident function frn =
f − fwz is bounded and integrable in Id since the feature
mapping φ is bounded. Furthermore, there exists a function
fcn ∈ C(Id ), such that ∀ε > 0, we have

ρK( fcn , frn ) <
ε

2
.

The above-mentioned conclusion could be theoretically guar-
anteed by the fact in [14]. It is clear that for any fcn ∈ L2(K ),
there exists a smooth function frn , such that || fcn − frn || < �	.

Hence, to approximate the resident function fcn , define that

fwh =
mq∑
j=1

wh j ξ(x; {φ,wh j , βh j })

where wh j , βh j , j = 1, . . . , mq, are samples from the given
probability measures. Since φ and ξ are nonconstant and
bounded, the composition function ξ(x; {φ,wh j , βh j }), j =
1, . . . , mq is obviously absolutely integrable. Hence, accord-
ing to the universal approximation property of RVFL (details
please refer to [9, Th. 1]), there exists a sequence of fwh , such
that ∀ε > 0, we have

ρK( fcn , fwh ) <
ε

2
.

Finally, we have that

ρK( f, fwm,n ) =
√

E

[∫
K
( f (x) − fwm,n (x))2d x

]

=
√

E

[∫
K
(( f (x) − fwz (x)) − fwh (x))2d x

]

= ρK( frn , fwh )

≤ ρK( frn , fcn ) + ρK( fcn , fwh )

≤ ε

2
+ ε

2= ε.

Hence, we could conclude that

lim
m,n→∞ ρK( f, fwm,n ) = 0.�

Corollary 1: For any compact set K ⊂ Id and any mea-
surable function f in Id , there exists a sequence of { fwm,n }
in BLS that is constructed by nonconstant bounded feature
mapping φ and absolutely integrable activation function ξ
(functions on Id , such that

∫
Rd ξ2(x)d x < ∞) and a respective

sequence of probability measures μm,n , such that

lim
m,n→∞ ρK( f, fwm,n ) = 0.

Moreover, the randomly generated parameters λm,n are sam-
ples from the distributions of probability measures μm,n .
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Fig. 3. CFBLS. Cascade of feature mapping nodes. (a) Broad structure. (b) Structure redrawn, as left side showing the cascade architecture.

This corollary obviously holds since it is clear that for any
f ∈ L2(K ), there exists a continuous function g, such that
|| f − g|| < � [14].

The above-mentioned Theorem states that the BLS is a
nonlinear function approximator but the weights are to be
found yet sometimes may not be easy. In the following,
we will discuss different composite models of BLS. These
composite models establish a different connections on either
feature mapping nodes or enhancement nodes that create more
nonlinearity mapping for the input and therefore may be easier
to find the connection weight in the last layer.

IV. COMPOSITE MODELS OF BROAD LEARNING SYSTEM

The BLS is a flexible model to be modified under various
constraints. Among them, regularization is of great benefit
to specific applications (see [15], [16]). A variant, which is
named graph regularized BLS for image recognition, has been
proposed in [17] and [18]. Additional structures based on the
original BLS would be proposed in this section. Several mod-
els are illustrated and discussed. As usual, the subscriptions of
the adopted functions φ(·) for the construction of the feature
nodes, and the functions ξ(·) for the enhancement nodes are
omitted. Generally, the variants of the model are motivated by
the following consideration: 1) the cascade of the feature maps
(CFBLS); 2) the cascade of the enhancement nodes (CEBLS);
3) the limited connection between the groups of cascaded
feature maps and the enhancement nodes (LCFBLS); 4) the
limited connection between the feature maps and the groups of
cascaded enhancement nodes (LCEBLS); and (5) the cascade
of feature mapping nodes and enhancement nodes (CFEBLS).

A. Broad Learning Systems: Cascade of Feature
Mapping Nodes (CFBLS)

This architecture cascades the a group of feature mapping
nodes one after another. As seen in Fig. 3(a), the feature
mapping nodes Z1, Z2, . . . , Zn form a cascade connections.

Therefore, for the input data X , the first group of feature
mapping nodes Z1 is denoted as

Z1 = φ(XWe1 + βe1) � φ(X; {We1,βe1})
where We1 and βe1 are randomly generated by distribu-
tion ρ(w). As for the second group, the feature mapping nodes

Z2 are established using the output of the Z1 nodes; therefore,
Z2 is expressed as

Z2 = φ(Z1We2 + βe2)

= φ(φ(XWe1 + βe1)We2 + βe2)

� φ2(X; {Wei ,βei }i=1,2).

Using the same process continuously, all the n groups of
feature mapping nodes are formulated as

Zk = φ(Zk−1Wek + βek )

� φk(X; {Wei ,βei }k
i=1), for k = 1, . . . , n (14)

where Wei and βei are randomly generated.
Next, the concentrated feature nodes Zn � [Z1, . . . , Zn] are

connected with the enhancement nodes {H j }m
j=1, where

H j � ξ(Zn Wh j + βh j )

and Wh j and βh j are under the distribution ρe(w). Here,
the distributions ρe(w) and ρ(w) usually are usually equal.

Finally, suppose that the network consists of n groups of
feature nodes and m groups of enhancement nodes, the system
model of this cascade of feature nodes BLS is summarized as
follows:

Y = [φ(X; {We1,βe1}), . . . , φn(
X; {Wei ,βei }n

i=1

)
|ξ(Zn Wh1 + βh1), . . . , ξ(Zn Whm + βhm )]Wm

n

= [Z1, . . . , Zn|H1, . . . , Hm ]Wm
n

= [Zn|Hm ]Wm
n

where Hm � [H1, . . . , Hm ], and Wm
n is calculated through

the pseudoinverse of [Zn|Hm ].
The incremental model of this composite network can be

derived similarly and is described in the following.
First, if the (n + 1)th set of composite feature nodes is

incrementally added and denoted as

Zn+1 � φn+1(X; {Wei ,βei }n+1
i=1

)
.

Consequently, the m groups of enhancement nodes are updated
under the randomly generated weights

Hexm � [ξ(Zn+1Wex1 + βex1), . . . , ξ(Zn+1Wexm + βexm )]
where Wexi ,βexi , i = 1, . . . , m are randomly generated.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. LCFBLS. Cascade of feature mapping nodes with the last group connected to the enhancement nodes. (a) Broad structure. (b) Alternative feature
nodes connection (recurrent structure).

Second, if the (m + 1)th group of the enhancement nodes
are incrementally added to the system and are denoted as

Hm+1 � [ξ(Zn+1Whm+1 + βhm+1)]
where Zn+1 � [Z1, . . . , Zn+1], and Whm+1,βhm+1 are ran-
domly generated. Denote Am

n � [Zn|Hm ] and Am+1
n+1 �

[Am
n |Zn+1|Hexm |Hm+1], the updated pseudoinverse and the

new weights of this cascade BLS network should be

(
Am+1

n+1

)+ =
[(

Am
n

)+ − D BT

BT

]
(15)

Wm+1
n+1 =

[
Wm

n − D BT Y
BT Y

]
(16)

where D = (Am
n )+[Zn+1|Hexm |Hm+1]

BT =
{

(C)+, if C �= 0

(1 + DT D)−1 DT
(

Am
n

)+
, if C = 0

(17)

and C = [Zn+1|Hexm |Hm+1] − Am
n D.

Specifically, this network inherits the advantage of fast
incremental learning in BLS. Besides, more characteristic
features are built in the modified network that leads to a
more versatile system. Fig. 3(a) is the illustration of the
above-mentioned broad learning network, and Fig. 3(b) is the
equivalent illustration of this cascade BLS network.

B. Broad Learning Systems: Cascade of Feature Mapping
Nodes With Its Last Group Connects to the Enhancement
Nodes (LCFBLS) or Recurrent Feature Nodes

Section IV-A describes a modified cascaded network. Here,
instead of connecting all the feature mapping nodes to the
enhancement nodes, only the last group of feature mapping
nodes is connected with the enhancement nodes.

Similarly, for the given input data X , the network with
n groups of feature nodes and m groups of enhancement nodes
is formulated as follows:

Y = [Zn|Hm ]Wm
n

where

Zk � φk(X; {Wei ,βei }k
i=1

)
, for k = 1, . . . , n

H j � ξ(ZnWh j + βh j ), for j = 1, . . . , m

Zn � [Z1, . . . , Zn]
Hm � [H1, . . . , Hm ]

and Wm
n = [Zn|Hm ]+Y . The matrix of the connecting weights

Wm
n is calculated by the ridge regression directly, and the

structure of the network is shown in Fig. 4(a).
Typically, the cascade of feature mapping [see (14)] is

similar to the definition of recurrent system, which is very
efficient in modeling sequential data. The recurrent structure
is perfect for text document understanding and time series
processing that deal with timing information in the input.

The recurrent information can be modeled in the feature
nodes as the recurrent feature nodes in the following [the
structure is illustrated in Fig. 4(b)] in order to learn sequential
information

Zk = φ(Zk−1Wek + XWzk + βek ), p = 1, . . . , n

where the matrices Wzk , Wek , and βek are randomly generated.
Specifically, in the recurrent model, each Zk is computed
under the previous feature Zk−1 and the input X simulta-
neously. Based on this variant, a recurrent-BLS and long
short-term memory-BLS can be constructed. The experiments
for 12 real-world natural language processing classification
data sets from CrowdFlower are reported in [19], and the pro-
posed models achieve much better results than the benchmark
methods in both accuracy and training time.

Remark: The structure of the proposed network in this part
leads to new enhancement nodes if the feature nodes are incre-
mentally added. Hence, only the increment of the additional
enhancement nodes is available here, and the algorithm is
similar to the corresponding section of the original BLS in [3].
Therefore, the details are ignored here.

C. Broad Learning Systems: Cascade of Enhancement
Nodes (CEBLS) or Recurrent Enhancement Nodes

This proposed BLS model reconstructs the enhancement
nodes by cascade of function composition. Again, for the input
data X , the first n groups of feature nodes are generated by
the following equations:

Zi � φ(XWei + βei ), i = 1, . . . , n

and Wei and βei are sampled from the given distribution.
Project the feature nodes Zn � [Z1, . . . , Zn] by function ξ(·),
we have that the first group of enhancement nodes is

H1 � ξ(Zn Wh1 + βh1) � ξ(Zn; {Wh1,βh1})
where the associated weights are randomly sampled. The
second group of enhancement nodes H2 is compositely
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Fig. 5. CEBLS. Cascade of enhancement nodes. (a) Broad structure. (b) Structure redrawn, as right side showing the cascade architecture. (c) Alternative
enhancement nodes connection (recurrent structure).

established as follows:

H2 = ξ(H1Wh2 + βh2)

= ξ(ξ(Zn Wh1 + βh1)Wh2 + βh2)

� ξ2(Zn; {Whi ,βhi }i=1,2).

Furthermore, the first m groups of enhancement nodes are

Hu � ξu(Zn; {Whi ,βhi }u
i=1), for u = 1, . . . , m (18)

where Whi and βhi are randomly generated under the given
distribution.

Consequently, the nodes Zn and Hm ≡ [H1, . . . , Hm ] are
connected directly with the output, and the modified BLS is

Y = [Zn|Hm]Wm
n

and Wm
n is calculated through the pseudoinverse of [Zn|Hm ].

Next, the incremental learning algorithm for cascade
of enhancement nodes is detailed in the following. Sup-
pose that the (n + 1)th set of feature nodes is incre-
mentally added as Zn+1 � φ(XWen+1 + βen+1). The uth
group of enhancement nodes should be supplemented by
ξu(Zn+1; {Wexi ,βexi }u

i=1), u = 1, . . . , m and the correspond-
ing matrix is denoted as

Hexm �
[
ξ(Zn+1; {Wex1,βex1}),

. . . , ξm(
Zn+1; {Wexi ,βexi }m

i=1

)]
where Wexi ,βexi , i = 1, . . . , m are randomly generated.

Next, the (m + 1)th group of enhancement nodes is formu-
lated as

Hm+1 � ξm+1(Zn+1; {Whi ,βhi }m+1
i=1

)
where Zn+1 � [Z1, . . . , Zn+1], and Whm+1 and βhm+1 are
randomly sampled. Therefore, the matrix Am

n � [Zn|Hm ]
is updated as Am+1

n+1 � [Am
n |Zn+1|Hexm |Hm+1]. In fact,

the output weights Wm+1
n+1 could be dynamically updated under

(15)–(17) since the notations of Am
n and Am+1

n+1 are actually
equivalent. The flatted network is illustrated in Fig. 5(a).
Fig. 5(b) is the redrawn illustration of the flatted network,
where the enhancement nodes in the right side are redrawn in
a deep way.

Similar to the last section, the cascade enhancement nodes
[see (18)] could be reconstructed in the form of recurrent.
In order to capture the dynamic characteristics of the data,
the enhancement nodes are recurrent connected and computed
based on the previous enhancement nodes and feature nodes
simultaneously. Therefore, for the given transition function ξ ,
the recurrent enhancement nodes [the structure is illustrated
in Fig. 5(c)] are formulated as

H j = ξ(H j−1Wh j + ZnWz j + βh j ), j = 1, . . . , m

where Wz j is the added weights for the features Zn . To test the
performance of the variants in time series, experiments on two
typically chaotic systems are provided in [20]. The prediction
accuracy for the given benchmark data sets is significantly
improved and outperforms other models.

D. Broad Learning Systems: Cascade of Feature Mapping
Nodes and Enhancement Nodes (CFEBLS)

This section takes a comprehensive cascade of both feature
mapping nodes and enhancement nodes. Again for given
input data set X , and output data Y , the composite feature
nodes Zk, k = 1, . . . , n, are generated by

Zk � φk(X; {Wei ,βei }k
i=1

)
where the weights are randomly sampled. Then, the m groups
of enhancement nodes are generated as

Hu � ξu(
Zn; {Whi ,βei }u

i=1

)
, for u = 1, . . . , m
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Fig. 6. CFEBLS. Comprehensive cascade composition model. (a) Broad structure. (b) Structure redrawn.

and all the associated weights are sampled under a specific
distribution.

Consequently, the network could be formulated as

Y = [Zn|Hm]Wm
n

where

Zn � [Z1, . . . , Zn]
Hm � [H1, . . . , Hm ]

and Wm
n = [Zn|Hm]+Y .

Regarding the incremental learning algorithm for the incre-
ment of additional feature nodes and enhancement nodes,
the matrix Am

n � [Zn|Hm ] is updated to Am+1
n+1 �

[Am
n |Zn+1|Hexm |Hm+1], where

Zn+1 � φn+1(X; {Wei ,βei }n+1
i=1

)
Hexm �

[
ξ(Zn+1; {Wex1 ,βex1}),

. . . , ξm(
Zn+1; {Wexi ,βexi }m

i=1

)]
Hm+1 � ξm+1(Zn+1; {Whi ,βhi }m+1

i=1

)
Zn+1 � [Z1, . . . , Zn+1]

Hm+1 � [H1, . . . , Hm+1]
where the weights Wen+1,βen+1 and {Whi ,βhi }m+1

i=1 are ran-
domly sampled and fixed. Finally, the flatted network of this
cascade structure is illustrated in Fig. 6(a) and an identical
deep representation is redrawn in Fig. 6(b).

Remark: Alternative structure of BLS with all cascade
groups of feature mapping nodes connected to all the cascade
of enhancement nodes is also available. However, the equa-
tions of the network are essentially similar to the proposed
ones, and details are omitted here.

E. Broad Learning Systems: Composite Model
Versus Wide and Deep Learning

Recently, wide and deep learning has been discu-
ssed ([21], [22]), where the structure combines a single-layer
linear systems and deep neural networks. This model is similar
to our structure (see Fig. 5(a) and (b)) in Section IV-C.

Although the original BLS is designed in the form of
flatted neural network, the cascade models proposed in
this paper can be redrawn in deep structure, equivalently,

Fig. 7. CEBLS. Modified network for cascade of enhancement nodes.

in Figs. 3(b), 5(b), and 6(b), respectively. These redrawn
models are not only broad but also “deep.”

Recall that an original BLS with n groups of feature maps
and m groups of enhancement nodes is shown in Fig. 1. If the
weights that connect the first n−1 groups of feature maps and
the first group of enhancement nodes are enforced to be 0,
the modified system is essentially the same with the model
in [21] except for the full-link connection between the m + n
groups of nodes in BLS and the output layer. This modified
network is redrawn in Fig. 7.

F. Broad Learning Systems: Cascade of Convolution
Feature Mapping Nodes (CCFBLS)

CNN has been a capable tool for pattern recognition if the
weights between the layers are chosen appropriately. Fig. 8
can be considered a BLS model with cascade of convolution
functions, where feature mapping nodes are the nodes going
through the mapping by convolution and pooling operators.
In another words, this model is a specific case of CFBLS
(see Section IV-A), which is a cascade of convolution feature
mapping nodes (CCFBLS).

The network based on convolutional functions is constructed
under the cascade of convolution and pooling operations in the
feature mapping nodes. First, the feature mapping nodes φ(·)
are defined as follows:

Zk = φ(Zk−1; {Wek ,βek })
� θ(P(Zk−1 ⊗ Wek + βek )), for k = 1, . . . , n
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Fig. 8. CCFBLS. Cascade of Convolution feature mapping nodes.

where the operator ⊗ is the convolutional function for the
given matrices, the function P(·) is the pooling operation,
and θ(·) is the selected activation function. Furthermore,
the weights of convolutional filters are randomly sampled
under a given distribution. Second, the expected network
is enhanced by function H j � ξ(Zn Wh j + βh j ), for j =
1, . . . , m, where Zn � [Z1, . . . , Zn]. Finally, to ensure as
much as information passed into the output layer, Zn and Hm

are connected directly with the desired Y . The whole network
is illustrated in Fig. 8. This architecture can be considered as a
variant of a 3-D CNN, where the connections are established
from every layer to the output layer. This composite model
has been tested on CIFAR-10 and CIFAR-100 data sets. The
results are very promising and outperform existing models in
accuracy and time [23].

G. Fuzzy Model in the Feature Nodes: Fuzzy
Broad Learning System

The Takagi–Sugeno (TS) fuzzy system can be merged into
BLS to form the fuzzy BLSs. The fuzzy BLS replaces the
feature nodes of BLS with a group of TS fuzzy subsystems.
The outputs of fuzzy rules produced by every fuzzy subsystem
in the feature nodes are sent to the enhancement layer for
further nonlinear transformation to preserve the characteristic
of inputs. Details of fuzzy BLS can be found in [24].

V. EXPERIMENTS

We discussed and formulated different variants of BLS in
Section IV with cascade of feature mapping nodes and/or
enhancement nodes. These frameworks have been tested on
different data sets, and additional applications are developed
and submitted in [19], [20], and [24]. In this section, compar-
isons of different data sets between the default BLS and its
variants are given.

In the following experiments, only the original BLS is
used to compare with typical models, such as SVM, LSSVM,
and ELM, on some representative benchmarks for function
approximation, time series prediction, and face recognition.

A. Function Approximation
1) UCI Data Sets for Regression: We select 10 regression

data sets from the University of California, Irvine (UCI)
database [25], which fall into three categories: small size and
low dimensions, medium size and dimensions, and large size
and low dimensions. The details of the data sets are listed
in Table I.

The cost parameter C and kernel parameter γ of SVM,
LSSVM [26], and ELM [27] play an important role in

TABLE I

DETAILS OF DATA SETS FOR REGRESSION

learning a good regression model, hence they have to be
chosen appropriately for a fair comparison. In this paper,
we carry out a grid search for the parameters (C, γ ) from
{2−24, 2−23, . . . , 224, 225} to determine the optimal settings
for SVM (using libsvm [28]) and ELM, whereas the optimal
values of (C, γ ) for LSSVM are decided by itself using
LS-SVMlab Toolbox. We also perform a grid search for
the parameters of BLS, including the numbers of feature
nodes N f , mapping groups Nm , and enhancement nodes Ne

from [1, 10] × [1, 30] × [1, 200], and the searching step is 1.
The parameter settings of the above-mentioned models are
shown in Table II.

We choose the best results from 10 trials for each data set,
and the root-mean-squared errors (RMSE) of SVM, LSSVM,
ELM, and BLS are given in Table III.

It can be concluded that the BLS outperforms the SVM,
LSSVM, and ELM in testing accuracy on the 10 function
approximation data sets.

B. Time Series Prediction
We use a wind speed data set [29] to compare the perfor-

mance of BLS with autoregression (AR), adaptive network-
based fuzzy inference system (ANFIS), SVM, and predictive
deep Boltzmann machines (PDBMs) [29] on predicting the
short-term wind speed. There are 50 000 wind speed data
recorded in every 10 min for training and 2500 for testing.
In the experiment, the look-back interval is 100 min, i.e., we
use the last 10 wind speeds to predict the next one. The models
are first trained by all the 50 000 samples, and they are then
employed to forecast the wind speed in 10 min–2 h ahead
based on the testing data. The mean absolute percentage error
is adopted to evaluate the models involved. The parameters
for BLS are N f = 10, Nm = 14, and Ne = 440.
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TABLE II

PARAMETER SETTINGS OF SVM, LSSVM, ELM, AND BLS FOR UCI DATA SETS

TABLE III

RMSE COMPARISON OF SVM, LSSVM, ELM, AND BLS ON DATA SETS FOR FUNCTION APPROXIMATION

Fig. 9. Wind speed prediction of BLS for (a) 10 min ahead, (b) 60 min ahead, and (c) 120 min ahead.

The prediction results for 10, 60, and 120 min ahead of
BLS are shown in Fig. 9. We can see that the BLS has the
relatively small AE, and the AEs of other models behave some
high oscillations.

The performance of the models is compared in Table IV,
and it is obvious that the BLS achieves the best prediction
accuracy on short-term wind speed forecasting.

C. Face Recognition
In this section, we select three popular face data sets,

including the Extend YaleB [30], The ORL Database of Faces
(ORL) [31], and The University of Manchester Institute of
Science and Technology (UMIST) [32], to compare the clas-
sification ability of BLS with SVM, LSSVM, and ELM. The
details of the above-mentioned face data sets are as follows.

1) Extended YaleB: The extended YaleB face database
comprises 2414 cropped images of 38 subjects with the size
of 32 × 32 pixels. The images have large variations in terms

of illumination conditions and expressions for each subject.
There are 30 images of each person for training and the
remain 1274 images for testing.

2) ORL: The ORL data set consists of 400 gray-scaled face
images of 40 different persons with the size of 32 × 32 taken
between April 1992 and April 1994 at AT&T Laboratories
Cambridge, and there are 10 different images of each person.
We randomly choose 6 pictures of each person for training set
and the rest 160 pictures for testing.

3) UMIST: The UMIST face database is composed
of 575 images of 20 distinct subjects with resolution 112×92.
This data set is more challenging because of the larger varia-
tions between the images of the same face in viewing direction
than regular image variations in face identity. We resize them
to 56 × 46 and randomly select 15 images per subject for
training and the rest for testing.
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TABLE IV

COMPARISON OF PERFORMANCE ON SHORT-TERM
WIND SPEED PREDICTION

Grid search method is also applied to find the optimal
settings of parameters for these models, and the searching
intervals for SVM and ELM are set to be the same as earlier.
The searching range for BLS is expended to [1, 60]×[1, 50]×
[1, 6000]. The parameter settings are shown in Table V, and
the classification results are listed in Table VI.

We can see that the BLS always has the highest classifica-
tion accuracies in recognizing faces from the three data sets,
which confirms that it outperforms the popular discriminative
models.

D. Classification for BLS’s Variants

In this section, the MNIST data set [33] and NORB data
set [4] are chosen to compare the classification abilities of
BLS and its variants.

1) MNIST: The MNIST data set consists of 60 000 training
images and 10 000 testing images of 10 classes with the size of
28 × 28. Meanwhile, considering the length limitation of this
paper, the incremental algorithms of the variants are not shown
in this section, i.e., only the one-shot versions are considered
and compared.

2) NORB: NORB data set consists of 48 600 images with
2 × 32 × 32 pixels each. The objects in the data set belong
to five distinct classes that are: 1) animals; 2) humans; 3) air-
planes; 4) trucks; and 5) cars. Among them, 24 300 images
are selected for training and the other 24 300 images are for
testing.

Since the classification of MNIST data and NORB data
is not challenging, the cascade of the feature maps and the
enhancement nodes is set as 2 consistently. We perform a grid
search for the associated parameters, including the following
sets: 1) the numbers of two-layer-cascaded feature nodes N f c,
the mapping groups Nmc , and the enhancement nodes Ne

for the cascade of the feature mapping nodes (CFBLS);
2) the numbers of two-layer-cascaded feature nodes Nflc,
the mapping groups Nmlc, and the enhancement nodes Ne

for the limited connection between the groups of cascaded
feature maps and the enhancement nodes (LCFBLS); 3) the
numbers of feature nodes N f , the mapping groups Nm , and
the two-layer-cascaded enhancement nodes Nec , the cascade

of the enhancement nodes (CEBLS); and 4) the numbers
of two-layer-cascaded feature nodes Nflc, the mapping
groups Nmlc, and the two-layer-cascaded enhancement nodes
Nelc for Cascade of feature mapping nodes and enhancement
nodes (CFEBLS). To simplify the denotations of this section,
the number of feature nodes, the mapping groups, and the
enhancement nodes are set uniformly as N f , Nm , and Ne ,
respectively.

The classification results of MNIST and NORB are listed
in Tables VII and VIII, respectively. We can observe that the
accuracy results of the MNIST and NORB are actually in the
same level. This may be caused by its favorable properties.
However, the structure of the networks differs from each other,
which implies that the cascade variants outperforms the default
BLS in structure optimization and most of case, less number
of parameters. Again, other applications are developed and
submitted in [19], [20], and [24].

E. Face Recognition Comparison
in CCFBLS and Resnet-34

The BLS composite model using convolution feature nodes,
CCFBLS, shown in Section IV-F and Fig. 8, is used to test
on one of the most challenging large-scale face recognition
databases, MS-Celeb-1M [34]. This data set is designed as
a benchmark task of face recognition to: 1) recognize one
million celebrities from the face images and link them to
the corresponding entity keys in a knowledge base [34] and
2) investigate low-shot face recognition with the goal to build a
large-scale face recognizer capable of recognizing a substantial
number of individuals with high precision and high recall [35].
Some images from the MS-Celeb-1M data sets are depicted
in Fig. 10.

The details of the experiment are designed as follows. The
original data set consists of 21 000 persons each with 50–100
images. This data set is divided into two sets, 20 000 persons in
the base set and the rest 1000 persons in novel set. In the base
set, tens of images for each celebrity are given to train the face
representation model, while in the novel set, only one image
is provided to train the model. In our experiment, the images
for the first 2000 persons in the base set are selected to test
the proposed CCFBLS.

The selected subset of MS-Celeb-1M contains 119 134 color
images associated with 2000 persons for training and 10 000
color images for testing. The average size of images is 250 ×
300×3 pixels. This is considered as a very large size of image
compared with Extended YaleB, ORL, and UMIST databases
that only 32×32 pixels are used, and this surely increases the
complexity and difficulty of the learning.

To demonstrate the effectiveness and efficient of the pro-
posed CCFBLS, the result is compared with the residual
network, which has been proven to be a popular and powerful
tool in image processing and recognition. The standard resid-
ual network with 34 layers (Resnet-34) [36] without special
feature tricks is constructed. The CCFBLS is constructed with
only 18 convolution functions, and four of the convolution
outputs are connected to the output nodes of the CCFBLS.
Both simulations are performed on a machine using an Intel
Corei7-7800X with a NVIDA GeForce GTX1080TICUDA.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V

PARAMETER SETTINGS OF SVM, LSSVM, ELM, AND BLS FOR FACE DATA SETS

TABLE VI

CLASSIFICATION ACCURACIES OF SVM, LSSVM, ELM, AND BLS ON FACE DATA SETS

TABLE VII

COMPARISON OF PERFORMANCE BETWEEN BLS’S

VARIATIONS ON MNIST DATA SET

TABLE VIII

COMPARISON OF PERFORMANCE BETWEEN BLS’S
VARIATIONS ON NORB DATA SET

Fig. 10. Some face images from the MS-Celeb-1M, and the example training
samples are selected from base set [35].

The environment of the experiments was Linux Ubuntu, with
Tensorflow 1.7.0 installed.

Detailed results are shown in Table IX. In CCFBLS, the total
of 108 196 neurons are needed, whereas in Resnet-34, the total
number of neurons are 188 880. Total of 12.290 million
parameters are used in CCFBLS, whereas 23.794 million

TABLE IX

PERFORMANCE COMPARISON BETWEEN CCFBLS AND

RESNET-34 ON MS-CELEB-1M FACE DATABASE

parameters are used in Resnet-34. It is shown that almost half
of the neurons, parameters, and half of the training time are
needed for the proposed CCFBLS to reach a better testing
accuracy.

VI. CONCLUSION

The frameworks of different variations of BLS structure
are proposed. This kind of establishment is to offer alterna-
tives of constructing flatted networks for future research. The
incremental learning algorithms of original BLS can still
apply to these variants, where weight connections are estab-
lished within the feature mapping nodes, within enhancement
nodes, or between feature nodes and enhancement nodes.
Mathematical modeling of these variants is also given. Several
deep and wide neural networks [10], [12], [13] can be consid-
ered as a special arrangement of the proposed BLS variants.

Adapting proofs from Hornik, we also prove that BLS
is a universal function approximator, which states that any
measurable function on R

d can be approximated arbitrarily
well by a BLS with nonconstant bounded feature mapping
and activation function in μ measure.

To test the approximation capability, the regression perfor-
mance of BLS is compared with SVM, LSSVM, and ELM on
UCI database and face recognition data sets, including Extend
YaleB, ORL, and UMIST. Similarly, AR, ANFIS, SVM, and
PDBM approaches are compared with BLS on time series
prediction. In order to have a fair comparison, parameters that
can achieve the best testing accuracy are generated through a
grid search for all the approaches. After that the classification
ability of variants of BLS is tested in NORB and MNIST.
It is shown that the proposed Cascade Convolution Feature
mapping nodes BLS (CCFBLS) variant can achieve a better
testing recognition accuracy with only almost half of the
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neurons, the parameters, and the training time in compared
with Resnet-34 structure in MS-Celeb-1M large-scale image
data set. It is shown that for given the benchmark data, the BLS
and its variants outperform the above-mentioned algorithms in
testing accuracy.
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