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Abstract—In order to improve simulation performance and to
integrate simulation resources among geographically distributed
locations, the concept of distributed simulation is proposed.
Several types of distributed simulation standards, such as DIS
and HLA, are established to formalize simulations and achieve
reusability and interoperability of simulation components. To
implement these distributed simulation standards and to manage
the underlying system of distributed simulation applications, we
employ Grid Computing and Cloud Computing technologies.
These tackle the details of operation, configuration, and mainte-
nance of simulation platforms in which simulation applications
are deployed. However, for modelers who may not be familiar
with the management of distributed systems, it is challenging to
make a simulation-run-ready environment among different types
of computing resources and network environments. In this article,
a new multi-layered cloud-based scheme is proposed for enabling
modeling and simulation based on different distributed simulation
standards. This scheme is designed to ease the management
of underlying resources and to achieve rapid elasticity that
can provide unlimited computing capability to end users; it
considers energy consumption, security, multi-user availability,
scalability, and deployment issues. A mechanism for handling
diverse network environments is described; by adopting it, idle
public resources can be easily configured as additional computing
capabilities for the local resource pool. A fast deployment model
is built to relieve the migration and installation process of this
platform. An energy-saving strategy is utilized to reduce the
consumption of computing resources. Security components are
implemented to protect sensitive information and block malicious
attacks in the cloud. In the experiments, the proposed scheme
is compared with its corresponding grid computing platform;
the cloud computing platform achieves similar performance, but
incorporates many advantages that the Cloud can provide.

Keywords—Cloud Computing, DIS, HLA, Availability, Energy
Consumption, Usability, Elasticity, Distributed Simulations.

I. INTRODUCTION

Compared with the traditional computer simulation, dis-
tributed simulation greatly reduces the length of time required
for executing the simulation and achieves larger computing
capabilities that are able to support geographically distributed
complex simulations [1]. In addition, multiple participants
from geographical distributed locations can be embedded in
the distributed virtual environments (DVEs) in the simula-
tion scenarios. Several approaches have been designed for
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distributed simulation systems, such as the Distributed Inter-
active Simulation (DIS) [2]; its successor – the High Level
Architecture (HLA) [3]; and the Data Distribution Service for
Real-Time Systems (DDS) [4]. The DIS is mainly designed
for military simulations; it introduces design concepts such as
interoperability, autonomy, and dead reckoning that prosper
to the development of distributed commercial applications.
HLA, initially developed by the Department of Defence in the
United States, is an extensively-used framework that provides
reusability and interoperability for distributed simulations. By
implementing this framework, modeling and simulation have
been enabled for supporting analysis, engineering, military,
entertainment, education, and various other applications which
can be linked to live systems, collectively defined as federates.
DIS and HLA have been also developed as IEEE standards
for modeling and simulation. DDS, managed by the Object
Management Group, is used as a messaging middleware stan-
dard that supports data-centric simulations, enabling seamless,
timely, scalable, and dependable distributed data sharing.

Coordinated by the aforementioned standards and frame-
works, large-scale distributed simulations can be deployed
to geographically distributed computing resources. However,
within the specifications of the standards and frameworks,
mechanisms for executing simulations are not provided for the
underlying systems. For each physical computation element, it
is necessary to carefully perform a series of configurations
to build the simulation-run-ready environments so that the
simulations can be executed properly.

In order to meet the need for handling the underlying
system, Grid Computing [5] is introduced to manage the shared
resources and the scheduling distributed simulations. A Grid
system functions as a coordinated resource sharing system
that provides services such as security, resource management,
information queue, and data management for distributed sim-
ulations. The Globus Toolkit (GT) [6] is defined as a de-facto
middleware standard for Grid Computing that helps to reach
seamless interoperability. Compared to traditional computing
simulation systems, Grid-based simulation platforms – with the
help of Grid services [7], overcome limitations in terms of dis-
tribution of resources, dynamic access, security, organization,
and collaboration.

Even though the Grid eases the management of underlying
systems for distributed simulations, there are still problems
with its ability to handle resources in a fine-grained manner.
As a result, Grid-based platforms cannot reallocate resources
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during runtime while fully supporting multi-users. To tackle
these issues with the underlying system, Cloud Computing [8]
is employed as a new approach for distributed simulations.
According to the analyses in [9] – [12], there are several
reasons to migrate distributed simulations from the Grid to
the Cloud:
• Resource sharing: Cloud provides resources on demand

during runtime, while Grid emphasizes fair sharing of
resources across organizations.

• Virtualization: For Grid, virtualization mainly covers
the softlayer, which concerns data and programming.
For Cloud, in addition to the softlayer, virtualization
covers hardware resources. By enabling abstraction and
encapsulation of raw physical resources, Cloud can pro-
vide better isolation and manageability for fine-grained
resources.

• Scalability: Grid scales primarily by increasing the num-
ber of working nodes. Cloud offers automatic resizing
of virtualized hardware.

• Payment: Grid services are typically billed using a fixed
rate, while Cloud users have the option of a pay-per-use
flexible payment model.

Although Cloud Computing has not been standardized to
inner interfaces for accessing resources, which may lead to
an inconvenient situation if computing resources are managed
by different cloud service providers, it is still a promising
approach for managing distributed systems and executing
distributed simulations. Compared with these Grid services,
the Cloud services, such as Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS),
are agile and flexible, resulting in a greater ease of control of
granularity of services.

Due to the advantages mentioned above, many cloud sim-
ulation platforms have been proposed, incorporating various
aspects into their design such as job scheduling, monitoring,
security, and other aspects, as shown in [46]. However, these
existing cloud platforms are implemented based on local re-
sources. In this case, to end users, the capabilities available for
provisioning are limited to the size of its local resource pool.
This is not in accordance with the essential characteristic of
elasticity in Cloud Computing, according to the definition from
the National Institute of Standards and Technology (NIST)
[13]. In addition, the issue related to energy consumption
is not fully addressed, particularly for distributed simulation
applications that require a relatively long period of time to
execute. The migration & deployment model of the cloud
simulation platform itself is also not fully discussed.

In this paper, a multi-layered cloud simulation scheme is
proposed, concerning usability, elasticity, energy consumption,
and fast deployment. Components are designed and imple-
mented to provide unlimited computing resources to end users
by coordinating public computing resources during runtime.
Energy-aware elements are utilized to reduce unnecessary
energy cost from computing resources. A deployment model is
designed to accelerate the migration and deployment process of
the cloud simulation platform. In addition, the scheme contains
functions for job scheduling, monitoring, and a friendly web-

based graphic interface to ease the configuration, operation,
and maintenance of the underlying system.

The reminder of the paper is organized as follows. In
Section II, state-of-the-art related research work is shown and
discussed. In Section III, the proposed scheme is described,
including architecture, key components, and functioning. In
Section IV, several experiments are presented and discussed
in terms of energy consumption, management efficiency, and
performance. In the last section, the proposed solution design
and experimental results are summarized, and directions for
future works are provided.

II. RELATED WORK

In order to facilitate the development of distributed simula-
tions, especially HLA-based simulations on the Grid platform,
much effort has been made in the area of service provisioning,
heterogeneity, resource distribution, and load management.

In the HLAGrid [14], a Federate-Proxy-RTI architecture is
proposed, enabling federates to be exposed as Grid services.
In this case, simulation resources can be configured, main-
tained and scaled much more easily, hiding the details of
the underlying platforms. In the HLA-GRID-REPAST [15],
the HLA-REPAST middleware coordinates the HLA-GRID,
providing an agent-based solution that enables distributed
simulations requiring computing resources and data sets from
geographically distributed locations. In [16], a management
framework is designed for HLA-based simulations in grid
environments, enabling HLA Management Service, Migration
Support Service and Broker Support Service. In [17], the
architecture of Load Management System (LMS) is proposed,
combining an existing resource sharing system with the RTI
of HLA. In this case, Grid services can be straightforwardly
utilized for job scheduling and federate migration. In [18], a
conservative approach is proposed to balance the load during
runtime. In [19], a hierarchical dynamic load balancing scheme
is designed to handle non-dedicated resources in the distributed
system. In [20], a distributed scheme is proposed that addresses
the communication load between distributed resources. In [21],
a predictive model is proposed. In this distributed dynamic
scheme, communication load can be balanced by a proximity
analysis of federate interactions.

The novelty of the Cloud Computing system offers many
features and characteristics that the Grid cannot support, as
mentioned in Section I. As a result, many cloud-based simu-
lation platforms are proposed for the distributed simulations,
focusing on on-demand resource provisioning, virtualization
management, security, monitoring, optimization of data pro-
cessing, synchronization, and other aspects.

The MapReduce [41] programming model is a widely used
scheduling approach in the cloud environment. This model for-
malizes the division and parallelization of processes for com-
putation tasks across multiple computing resources, achieving
fault tolerance, locality optimization, and load balancing. This
approach facilitates cloud applications such as data mining,
machine learning, and sorting. However, this scheme cannot
achieve a low enough latency to guarantee the performance
of distributed simulation applications, particularly those that
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TABLE I. COMPARISONS IN CLOUD SIMULATION PLATFORMS

Cloud Platform Scheduling Security Usability Energy Consumption Experiment Analysis Protability Architecture Design

MapReduce[41] Yes Yes
Aurora System[22] Yes Yes
TW-SMIP[23] Yes Yes
CSim[24] Yes Yes
CDS[25] Yes Yes Yes
Cloud Simulation System[27] Yes Yes Yes
On-demand Simulation Cloud[26] Yes Yes
Latency in Simulation Cloud[29] Yes
Security in Simulation Cloud[43] Yes Yes
Proposed Yes Yes Yes Yes Yes Yes Yes

require intensive communications and frequent message ex-
changes.

The Aurora system [22] also focuses on the task scheduling.
This system is introduced to address the issue of small message
communication in the cloud. In this system, a master/worker
paradigm is implemented to aggregate small simulation com-
munication messages, which are bundled and redirected to
different destination resources. With the automatic bundling of
small communication messages during the simulation execu-
tion, the cloud’s high bandwidth network can be better utilized.

The Time Warp Straggler Message Identification Protocol
(TW-SMIP) [23] is advanced to handle optimistic synchro-
nization. In the TW-SMIP, heartbeat messages are used to
detect straggler messages. The straggler message identification
is implemented to reduce the amount of rollbacks that may
be caused by asymmetrical or uneven processing loads. In
addition, in this protocol, three types of SMIP protocols are
proposed to distribute heartbeat messages that concern conges-
tion, autonomous administration and communication overhead
respectively.

Cloud-based Simulation (CSim) [24] concerns the idle CPU
cycle issue. In this proposed scheme, each processor is virtu-
alized as two CPUs (VCPU) – one foreground and one back-
ground. When the higher-priority foreground VCPU begins
an idle cycle, the lower-priority, background VCPU begins
working. According to the author, the foreground VCPU loses
less than 4% performance due to this type of job scheduling,
but many idle CPU cycles can be utilized by the background
VCPU. Based on this two-tier structure, four job scheduling
algorithms are also proposed in this scheme to improve the
performance of parallel simulations on the cloud.

In the Cloud-based Distributed Simulation system (CDS),
a new Cloud-RTI middleware based on traditional RTI is
proposed [25]. With the encapsulation of traditional RTI, this
Cloud-based RTI is provided by the use of web services. In this
protocol, optimization in the process of registration operations
is also made by its Management Center. For security, this
system deploys a hierarchical identity-based cryptography and
a role-based access control scheme. In the access control
scheme, the root Key Generation Center (KGC), domain
KGC, and sub-level domain KGC are proposed, tackling the
inconvenience created when accessing services from different
domains. With the layered KGC design, isolation of domain
services is more easily achieved.

The Cloud Simulation System in [27] attempts to draw a
full-scale picture of the cloud-based simulation system. In

terms of security, it integrates portal security agents, access
control, and self-organization to enhance protection of sensitive
data. The security control domain is defined with different
levels of privilege, in attempts to avoid malicious behaviours.
A management system is created for various resources, record-
ing global ID and life-cycle and attempting to ease resource
allocation. Individuation virtual desktop technology, multi-user
oriented dynamic building technology, and automatic compo-
sition technology of simulation models are used to support
multi-user operation and simulation environment deployment.
A parallel engine is defined to support fine-grained resources
and tackle the sub-model issue in one federate. In this engine,
lookahead is defined to extend the time interval of model
parallelism, and tread-level simulation engine instances are
created for large-scale simulations. Monitoring and evaluation
technology is implemented for detecting abnormal behaviours
on the platform and providing information for further opti-
mization decisions.

In [26], the authors propose an on-demand HLA based
simulation environment on the cloud. In [29], time latency
is compared between Cloud-based RTI and native Portico RTI
[35], and it shows that, within a certain range of length of
update data, time latency is acceptable on the cloud.

In a series of related works [43] – [45], the authors discuss
how to monitor the requirements in shared cloud platforms as
well as how to deal with the profile-aware attack in IaaS cloud.

As shown in Table I, the aforementioned cloud simulation
schemes promote many aspects of distributed simulations in
the cloud environment. However, these schemes show limited
details in terms of the deployment procedure for the proposed
cloud simulation platform itself, which is challenging for
modelers who may not be familiar with the management of the
distributed system. As a result, the cloud-based simulation is
relatively hard to popularize due to the complex configuration
and maintenance of diverse raw resources which constitute the
fundamental computing capability of the cloud environment.
In addition, the current cloud simulation platforms mainly
focus on the private cloud deployment model, which means
only limited local physical raw resources are virtualized and
coordinated in the cloud resource pool. In this case, to end
users, the compute utility seems inadequate, particularly for
large-scale distributed simulations. Meanwhile, the energy
consumption issue is not fully addressed and discussed for
the distributed simulation in the cloud resource pool, which
may lead to substantial waster when the scale of computing
resources is increased.
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In this paper, a multi-layered elastic cloud simulation
scheme is proposed, which supports the capability of automatic
deployment, reduction of energy consumption, and scaling
outwards. A deployment management scheme is proposed to
tackle the deployment and migration aspects of the cloud
simulation scheme, providing a flexible and agile approach for
building backup replicas for the current platform. The energy
consumption issue is considered, and solutions are proposed
and implemented. The scaling process is implemented, which
responds rapidly to requirements from cloud users, providing
unlimited computing resources to end users. The scaling
components support idle public instances such as physical
desktops, workstations, laptops, or public cloud instances from
different cloud providers such as AWS, Google App Engine,
or Azure, which can be located in geographically separate
regions.

III. CLOUD SIMULATION PLATFORM

A multi-layered platform is proposed to support diverse
distributed simulation standards and to hide the management
of underlying details. A deployment model is designed for the
easy installation, migration, and duplication of the platform. A
web-based graphic portal with safety strategies allows users to
obtain access to the platform workbench through lightweight
terminals. A self-managed simulation resource pool is im-
plemented that supports, stores, and configures simulation-
related softlayer resources automatically for the user’s direct
usage. An integration and virtualization approach is designed
that can handle hardlayer resources as plug-in components
elastically, requiring no direct configurations. An Energy-
saving mechanism is also utilized to reduce unnecessary energy
cost.

As shown in Figure II, this Cloud Simulation Platform
consists of five layers: the Raw Resource Layer, the Integration
and Virtualization Layer, the Simulation Function Layer, the
User Management Layer, and the Deployment Management
Layer. Specifically, the deployment mechanism, security mech-
anism, migration mechanism, and resource scheduling mech-
anism will each be illustrated in detail with the description of
related key features of each layer.

A. Deployment Management Layer
Fast and automatic deployment and migration of the pro-

posed scheme in new environments is a priority. To achieve
this, the Simulation Resource Deployer, the Virtual Resource
Deployer, and the Cloud Infrastructure Deployer (as depicted
in Deployment Management Layer of Figure II) cooperate
to backup current platform status, pack and transmit core
resources to new environments, and deploy the platform based
on its previous saved status.

1) Simulation Resource Deployer: The Simulation Resource
Deployer focuses on simulation-related package handling.
These simulation-related packages are managed by the Sim-
ulation Storage Manager (in Layer 3, Figure II) and are stored
in both cloud and block storage. When platform packaging
starts, the Simulation Resource Packager is triggered by the
packaging process, and it calls the Simulation Storage Manager

Algorithm 1: Cloud Simulation Platform Packaging and
Installation Algorithm

1 Require: SIGN SR, SIGN V R, SIGN CP.
2 Note: CID − Cloud Infrastructure Deployer,
IPC − Installation Parameter Collector,
OD −OpenStack Deployer,
CSDP − Cloud Simulation P latform Deployer,
SV RS − Simulation/V irtual Resource Scheduler.
UM − UserManager

3 if SIGN CP == packaging start
4 then
5 SIGN SR ⇐ SIGN CP
6 SIGN V R ⇐ SIGN CP
7 CID.stop(UM,SRM,V RM,SIGN CP )
8 while SIGN CP ! = packaging ready
9 do

10 SRpacks ⇐ SRP.search(SRM,SIGN SR)
11 SRpacks.save()
12 V Rpacks ⇐ V RP.search(V RM, IM,SIGN V R)
13 V Rpacks.save()
14 if SIGN SR == ready && SIGN V R == ready

then
15 CID.add(SRpacks, V Rpacks)
16 CID.save()
17 SIGN CP ⇐ packaging ready

18 else
19 SIGN CP ⇐ recheck
20 SIGN SR ⇐ SIGN CP
21 SIGN V R ⇐ SIGN CP

22 SIGN CP ⇐ transmitting

23 if SIGN CP == installation start
24 then
25 CID.auth()
26 IP ⇐ IPC.search(comp, st, nw)
27 OD.install(IP )
28 CSPD.install(IP )
29 SV RS.sche(SRI, V RI)
30 while SIGN CP ! = installation end
31 do
32 SRI.unpack(SRpacks)
33 SRI.register(SRpacks)
34 V RI.unpack(V Rpacks)
35 V RI.register(V Rpacks)
36 if SIGN SR == installation end
37 && SIGN V R == installation end
38 then
39 CID.test()
40 CID.end()

41 else
42 SIGN CP ⇐ recheck
43 SIGN SR ⇐ SIGN CP
44 SIGN V R ⇐ SIGN CP
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Cloud Simulation Scheme

Fig. 1. Cloud Simulation Framework

to find all packages that require packing. After the search is
completed, the Simulation Resource Packager compresses all
necessary packages, waiting for transmission. When installa-
tion begins, the Simulation Resource Installer is invoked by
the installation main program. It decompresses simulation-
related packages and stores these packages in a temporary
folder. After the Cloud Infrastructure is properly deployed,
the Simulation Resource Installer calls Simulation Resource
Manager to register the packages currently stored in the
temporary folder. Finally, these packages are removed from
a temporary folder and stored in the proper cloud storage and
block storage again, ready for further usage.

2) Virtual Resource Deployer: The Virtual Resource De-
ployer functions in a similar manner as the Simulation Re-
source Deployer. It is responsible for the handling of the sim-
ulation units – the virtual instances. When packaging begins,

it calls the Virtual Resource Scheduler (in Layer 3, Figure
II) and the Virtual Resource Manager (in Layer 4, Figure II)
to record the real-time statuses of all computing instances in
the entire system. The current statuses of virtual instances
are saved by creating images. The Virtual Resource Packager
classifies these images according to their owners. During
the installation process, the Virtual Resource Installer first
checks the Authentication status of the image owners, and then
unpacks the images based on image users. Before the image
can be used in the new environments, the Virtual Resource
installer must trigger the Virtual Resource Scheduler to register
the images and rebuild computing instances accordingly. These
are created with the same instance type and network topology
as in the original cloud simulation platform.

3) Cloud Infrastructure Deployer: The Cloud Infrastructure
Deployer disposes components related to cloud middleware
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and virtualization tools. The configuration of these components
are highly based on the new targeting environments. The
Installation Parameter Collector is designed to collect relevant
parameters required during the installation for the new physical
environment, such as compute capability, Hard Disk capacities,
and network characteristics. These parameters are passed to
the OpenStack Deployer and the Cloud Simulation Platform
Deployer to install the core components and services as shown
in Figure II. After this step, the Simulation/Virtual Resource
Scheduler triggers the Simulation Resource Installer and the
Virtual Resource Installer to handle relevant softlayer and
hardlayer deployment respectively.

4) Cloud Simulation Platform Packaging and Installation
Algorithm: The entire packaging and installation process is
shown in Algorithm 1. The packaging program begins in line
3 and ends in line 22. After the packaging main process
is initialized, the Cloud Infrastructure Deployer calls the
Simulation Resource Manager, the Virtual Resource Manager,
and the User Portal to stop accepting new tasks, as shown
in line 7. Once the current simulation tasks and the virtual
instance scheduling tasks are completed, two sub-processes
are triggered by the main program to package simulation
resources and virtual resources at the same time. On one
hand, the Simulation Resource Packager finds the required
simulation-related packages in the Simulation Resource Pool
with the help of the Simulation Resource Manager. These
packages are then copied and compressed from the cloud
storage. On the other hand, the virtual computing resources
are handled by the Virtual Resource Packager. The Virtual
Resource packager calls the Virtual Resource Manager to find
the virtual instances, and invokes the Image Manager to build
images to save the status of each instance. After both sub-
programs are completed as shown in line 14, the packed
simulation resources and virtual resources are registered to the
main packaging process in the Cloud Infrastructure Deployer.
Finally, the Cloud Infrastructure Deployer packs external tools
such as the cloud middleware and virtualization components,
ready to transmit.

The installation process contains three steps: the cloud
infrastructure installation, the simulation resource installation,
and the virtual resource installation. The main installation
process first invokes the Cloud Infrastructure Deployer to build
the basic cloud platform. Before the real installation process
begins, the installation parameters that are required during the
cloud infrastructure installation are collected by the Installation
Parameter Collector. The collecting process may need the
authorization of the system administrator before it can begin.
Then, the OpenStack Deployer and the Cloud Simulation
Platform Deployer build core components in the Integration
and Virtualization Layer and main services in the Simulation
Function Layer. After this, The Simulation/Virtualization Re-
source Scheduler calls the Simulation Resource Installer and
the Virtual Resource Installer to install simulation resources
and virtual resources. The Simulation Resource Installer and
the Virtual Resource Installer work simultaneously, uncom-
pressing, storing, and registering relevant packages in the new
environments. After these two sub-processes are finished, in
the end, the Cloud Infrastructure Deployer tests the functions

of key services, as well as the availability of the simulation
pool and the virtual resource pool, ensuring the correct instal-
lation.

B. User Management Layer
This layer focuses on security issues in the cloud environ-

ment. In this layer, an authentication and access control mech-
anism is proposed to protect users against threats from both
inside the cloud and outside the cloud. In addition, this layer
also provides a web-based graphic portal and a command-
line interface, through which users can access the simulation
resources and the computing capability of the proposed cloud
simulation platform. This user portal enables users to design,
code, analyze and test complex distributed simulations via
lightweight terminals such as laptops, tablets, or even smart
phones.

1) Authentication and Access Control Algorithm: Algorithm
2 shows the authentication and access control process. After
the user registers in the platform, as shown in line 2, the
cloud firewall adds the new user to the acceptance list. In
this stage, the user receives authorization to access the shared
materials in the Simulation Resource Pool. Users can take
advantage of softlayer resources in the pool which gathers
and presents codes, templates, solutions, applications, and
experiences shared by other cloud users. In order to secure
the user-defined simulations in the Simulation Resource Pool,
a unique private key is created and stored by the simulation
owner, which is required when the user edits or updates its
private simulations and application. An X-token, controlled
by the Virtual Resource Manager, is provided to enhance
the security of user-defined virtual instances. This access key
allows the user to access private virtual instances in the Virtual
Resource Pool, as shown in line 11. It is required when users
create, access, modify, or delete instances. The X-tokens and
the passwords function as a two-layered security mechanism,
stored separately in the platform. On one hand, if one user is
accidentally attacked and loses the control of its instances due
to the leak of username/password, the attacker cannot tap into
the data inside the user-defined instances due to the lack of
the X-tokens; on the other hand, if the X-tokens are stolen,
users can stop or suspend their instances immediately through
the control console (login by username/password), and then
reset the X-tokens. The default lifespan of the X-tokens is 24
hours, which is set the same as the identity components in
the internal cloud middleware [30]. With encryption, X-token
and virtualization technology, users on the cloud are better
isolated and protected so that malicious operations from cloud
users or system administrators inside the cloud can be more
easily blocked, ensuring that at any time, one virtual instance
can only belong to one cloud user for its exclusive usage.

C. Simulation Function Layer
This layer provides core functions and services that naturally

enable and support different types of distributed simulation
standards, such as HLA (High Level Architecture) [3], DIS
(Distributed Interactive Simulation) [2], and DDS (Data Dis-
tributed Service) [4], which include the Distributed Simulation
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Algorithm 2: Authentication & Access Control Algorithm
1 Require: username/password, private key, x token
2 User.signup()
3 User.fw.ad(user)
4 if User.auth() == True
5 then
6 User.access.add(SRP.r)
7 if User.auth(key)
8 then
9 User.access.add(SRP.w)

10 if User.auth(x token)is not expired then
11 User.access.add(V RP.w)

12 else
13 User.auth.update()

14 else
15 User.access.del()

Workbench, the Simulation Resource Manager, and the Virtual
Resource Manager.

1) Distributed Simulation Workbench: The Distributed Sim-
ulation Workbench offers users a self-defined distributed sim-
ulation foreground, enabling users to focus on design, analysis
and testing without further concerns regarding the configu-
ration and maintenance of the underlying physical system.
Based on the user’s privilege, the Simulation Service Manager
furnishes and coordinates simulation services for users, which
include an online modeling service, a simulation analysis
service, a fault tolerance service, and a load relocation ser-
vice. The on-line modeling service is designed for modelers
to code, submit, execute, and debug through a web-based
lightweight interface. Other services can be lightly applied by
this interface. Simulation analysis service records and provides
end users with the results of simulation execution, simulation-
related system logs, and simulation performance statistics,
such as CPU load, simulation execution time, and network
bandwidth usage, helping to reveal potential issues in the user-
designed programs and applications. Fault tolerance service
protects user-defined simulations from computation errors,
storage errors and network errors, providing rollback and
failover mechanisms. The Virtual Machine (VM) migration is
utilized as an approach for simulations to recover from failed
physical resources. The load relocation service supports user’s
ability to reschedule virtual instances and modify instance
types or network topology during run-time, simplifying the
set of comparison experiments. The statuses of these services
are tracked by the Simulation Service Monitor. In addition,
the Simulation Service Monitor detects and updates the states
of the physical machines that periodically compose these sim-
ulation services. If any physical error occurs, the Simulation
Service Monitor is responsible for blocking relevant resources
and informing the cloud simulation platform administrator.
The Simulation Service Scheduler manages and maintains the
background execution queue for the simulation service requests
from multi-users, ensuring proper execution orders of simula-
tions. In addition, the Simulation Service Scheduler calculates

the energy consumption of the entire platform and implements
energy efficient policies, reducing energy consumption by
migrating and centralizing virtual instances and releasing idle
physical machines.

2) Simulation Resource Manager: The Simulation Resource
Manager concerns the network, OS, software dependency,
storage, and computation aspects of the distributed simula-
tions. It also manages the Simulation Resource Pool, which
gathers, presents, and shares codes, templates, solutions, and
applications of diverse distributed simulation standards among
the cloud users. The Simulation network manager handles
the network model for the given distributed simulations. It
currently supports unicast, multicast, and broadcast approaches
used by most distributed simulation standards for communica-
tion. In addition, it works with the Virtual Resource Scheduler
to initialize the virtual instance’s network topology for self-
defined virtual instances. The simulation OS Manager controls
and stores a list of images of OS for booting virtual instances.
Users are able to modify system settings, such as firewall rules,
partitioning of the hard disk, software repository, and other
system information before the virtual instances are booted. The
Simulation Package Manager is responsible for arranging the
simulation of dependent packages. This component natively
supports standards including HLA, DIS, and DDS, and it
automatically configures and installs dependency packages that
each corresponding implementation may further require. In
order to enable the diversity of distributed simulations, the
Simulation Package Manager also allows users to manage
and define self-designed packages for specific scenarios. The
Simulation Storage Manager provides two types of storage
in the background for simulations: cloud storage and block
storage. Cloud storage is mainly used as replicas to backup
resources in the Simulation Resource Pool in the event that
local resource storage servers fail. In addition, these cloud
replicas can be easily shared among users inside and outside
the platform. The block storage saves all necessary information
that this cloud simulation platform requires during runtime
and it utilizes the Network File System (NFS) to accelerate
the scheduling process of simulation resources. The Simula-
tion Compute Manager concerns the compute capability for
the current distributed simulation. It communicates with the
Simulation Service Monitor to check local compute resources.
If local resources are not sufficient for current simulations, it
calls the Virtual Resource Manager and the Public Resource
Agent to enable additional public computing resources to fulfil
the computation requirements.

3) Virtual Resource Manager: Due to the diversity of
modeling and simulation applications, computing resource
requirements differ. The Virtual Resource Scheduler is utilized
to control the granularity of resources so that the need of
diverse simulation applications can be better met. Based on
the requirement information from users, the Virtual Resource
Scheduler helps to arrange the simulation environment based
on the parameters of the computing unit, such as the number
of virtual processors, memory size, network topology, and the
quantity of virtual machines. The Virtual Resource Scheduler
invokes corresponding components in the Virtual Resource
Manager and in the Public Resource Agent, discovering proper
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computing resources and instantiating virtual computing in-
stances in the Virtual Resource Pool.

4) Scheduling Algorithm and Dynamic VM Realloca-
tion: Several resource scheduling algorithms are provided
for instance creation, as shown in Algorithm 3: random,
computation-intensive, and communication-intensive. N in
line 1 defines the number of virtual resources that require
deployment in simulations. The default value is 0, which means
the current available resources are already adequate, and there
is no need for additional virtual resources to be scheduled
from the Virtual Resource Pool. In this context, IT in line 1
is short for the instance type. This parameter expresses the type
of virtual instances that may be further initiated and utilized.
It contains computing and storage capability information such
as processors, RAM and hard disk. SA, which is first shown
in line 1, stands for the type of the scheduling algorithm. In
Random, as shown from line 4 to line 14, the Virtual Resource
Scheduler randomly creates instances. First, from the Virtual
Resource Pool, a queue of all current available resources are
listed. Then, based on the number of available resources, a
random integer number n is selected according to a normal
distribution. The resource whose index number is n in the
resource queue is chosen as the destination physical host. After
this selection, the request to boot the virtual instance is queued
in the background and then redirected to the destination’s
physical host. Finally, the virtual instance is instantiated on
the targeting physical host, and the system records and updates
the resource information in the Virtual Resource Pool. At this
time, one round of scheduling ends and the next round is
ready to begin. Differently from the random scheduling, the
computation and communication-intensive approaches make
use of a greedy technique for allocation of resources. In
computation-intensive scheduling, shown from line 15 to line
24, a current available resource queue is first created in the
same manner as the random scheduler. Then, the resource
whose current computing capability is the largest in the
queue is selected as the destination resource. In this mode,
large virtual instance types are particularly chosen as IT for
simulations involving large computation tasks. With this type
of scheduling and the large virtual instance type, the rounds of
scheduling can be noticeably reduced. In the communication-
intensive mode shown between line 25 and line 35, the first
resource in the current available resource queue is selected as
the destination host. Then, this selected physical host attempts
to schedule and boot as many virtual instances as possible on
itself until its compute capability is exhausted. In this way,
communication-intensive simulation entities can be likely to
exist in the same physical host, so that the communication
distance of simulation entities is reduced. After each round of
scheduling, a virtual instance migration may be triggered by
the Simulation Service Scheduler, reallocating virtual instances
and centralizing simulation tasks. In this case, idle physical
resources can be released and the energy consumption of the
system can be reduced.

D. Integration and Virtualization Layer
In order to utilize the raw computing capacity from diverse

resources, the Integration and Virtualization Layer is designed

Algorithm 3: Scheduling Algorithm & Dynamic VM
Reallocation

1 Require: N, IT, SA
2 N update()
3 IT update()
4 if SA is Random Scheduling
5 then
6 while N ! = 0 do
7 ava res que ⇐ res pool.search(IT )
8 n ⇐ random(0, ava res que.index)
9 des res ⇐ ava res que.get(index = n)

10 boot que.add(des res, IT )
11 sys.rec()
12 sys.update()
13 N update()
14 VM.realoc()

15 if SA is Compute− intensive Scheduling
16 then
17 while N ! = 0 do
18 ava res que ⇐ res pool.sort(IT )
19 des res ⇐ ava res que.find low load()
20 boot que.add(des res, IT )
21 sys.rec()
22 sys.update()
23 N update()
24 VM.realoc()

25 if SA is Communicate− intensive Scheduling
26 then
27 while N ! = 0 do
28 ava res que ⇐ res pool.search(IT )
29 des res ⇐ ava res que.get(index = 1)
30 while des res is not exhausted or N ! = 0 do
31 boot que.add(des res, IT )

32 sys.rec()
33 sys.update()
34 N update()
35 VM.realoc()

to coordinate these resources and implement virtualization
technologies. This layer contains two core components: the
Virtual Resource Manager and the Public Resource Agent.
Although these components are not visible to end users, they
play an important role in automatic configuration, management
and maintenance of the underlying raw resources while hiding
complex details of system management.

1) Virtual Resource Manager: The Virtual Resource Man-
ager plays a crucial role in integrating physical resources,
which includes three sub-managers: the Compute Resource
Manager, the Image Manager, and the Network Manager.
The Virtual Resource Manager maintains and manages the
cloud middleware and virtualization tools. Based on the user-
defined requirements from the aforementioned Virtual Re-
source Scheduler, the Virtual Resource Manager calls its rele-
vant sub-managers to process compute-related, storage-related,
or network-related management programs. These programs
work as based for building the experimental or execution
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environment. The Compute Resource Manager deals with
the establishment of virtual instances based on the selected
scheduling algorithm and the characteristics of the user-defined
virtual instances. The Image Manager handles the operating
system and simulation-related soft-layer issues. According
to various implementations of different distributed simula-
tion standards, the Image Manager pre-arranges the operation
system and the simulation-related packages for the virtual
instances before it is booted from the Compute Resource
Manager. The Network Manager controls the network topology
of the virtual instances. In this case, these virtual instances can
be instantiated in the same physical host or among multiple
adapters, based on simulation requirements. In addition, the
Network Manager maintains the key bridge that is designed
to support communications between local virtual instances
and public instances. It virtualizes the public portal of the
cloud simulation platform, binding the virtual portal and public
tunnels.

2) Public Resource Agent: In order to achieve rapid elas-
ticity in the cloud simulation platform, the Public Resource
Agent is designed to increase computational capabilities dur-
ing runtime. This is achieved by introducing public physical
resources such as instances in the public cloud (eg., Amazon
EC2 instances). To coordinate the local resources and public
resources, the diversity of the public network should be taken
into careful consideration. In the public network, multicast and
other approaches of package transmission protocols, which are
widely used in many distributed simulation standards, may not
be well supported by routers, switches, or hubs, which are
in the communication path between cloud instances deployed
over different remote networks. For instance, routers drop
multicast messages by default if the destination resource and
the original resource are not set in the same subnet. The Public
Resource Agent is introduced to manage the public networks
to meet the demands of distributed simulation. First, the Public
Resource Agent builds specific virtual tunnels for each public
resource based on the physical network, penetrating the public
Internet and encapsulating packages and messages that need to
be sent and received. After the virtual tunnels are initiated, the
relevant Firewall rules are modified to support the established
communication among local instances and public instances,
redirecting packages and messages to the proper destinations.
The Public Resource Agent listens to the Virtual Resource
Scheduler and analyzes the simulation requirements defined
by users, so it only invokes public instances if local current
computational capability are not sufficient and the Service
Level Agreement of the user is not violated.

3) Simulation Execution Algorithm: In Algorithm 4, the
underlying simulation execution process is described step-
by-step. First, when the Virtual Resource Scheduler receives
simulation tasks from the user, the identity and priority of a
user is verified, as shown in line 3. This ensures that the user
can reach full access to the Simulation Resource Pool and the
Virtual Resource Pool. The detailed authentication and access
control process is demonstrated in Algorithm 2. Then, based on
the information collected from the Simulation Service Monitor,
the Virtual Resource Scheduler decides whether it is necessary
to invoke public instances. On one hand, if local computing

capabilities are sufficient (as shown in lines 5 to 10), the Public
Resource Agent is not contacted. In this situation, the Virtual
Resource Manager calculates the number of virtual instances
that must be instantiated and collects user-defined parameters
such as SA, IT, and simulation related packages. The Virtual
Resource Manager then boots the instances in line 9, as illus-
trated in Algorithm 3. On the other hand, if local computing
resources do not meet the requirements, the Public Resource
Agent is called to arrange additional computing capabilities, as
shown in lines 12 to 17. In this case, after the local computing
resources are exhausted, the Public Resource Agent configures,
links and bridges the public instances to local user groups,
enabling communications among local virtual instances and
public instances in the same user-defined group. In this stage,
the virtual resources are properly prepared, and are ready to
execute softlayer commands. Before the distributed simulation
applications begins to run, the simulation scripts are supposed
to map to destination instances by the Simulation Resource
Manager, as shown in lines 20 to 25. The Simulation Resource
Manager pairs the index of user-defined simulation packages
in the Simulation Resource Pool and the index of virtual
instances in the user’s private Virtual Resource Pool, delegating
simulation executing packages to destination instances. After
each round of simulation, the executing packages can be
remapped to different instances for comparison study. After
the simulations are completed, as shown in lines 26 to 32,
the simulation-related packages and logs are uploaded to Hard
Disk storage and cloud storage. The status of computing
resources is saved in the system as images and the computing
capabilities can properly store and reused later for a future
instantiation.

E. Raw Resource Layer
The Raw Resource Layer is a pool of untreated resources,

such as computing resources, storage resources, and network
resources. The whole cloud simulation platform is built on
top of these resources. In this layer, physical hosts are not
configured and coordinated, as they contain only an operating
system and basic software that such an operating system
brings.

IV. EXPERIMENTS AND RESULT ANALYSIS

The prototype of this platform has been implemented and
deployed on a cluster, on one single machine, and on the
Amazon EC2 instance respectively to test and compare the
performance. The cluster was composed of 20 nodes, and
each node of the cluster contained a Quad Core 2.40GHz
Intel(R) Xeon(R) CPU and 8 gigabytes of DIMM DDR RAM
memory. All nodes were interconnected through a Myrinet
optical network that allowed data transmission up to 2 gi-
gabytes per second. The single machine setup contained a
Quad Core 2.40GHz Intel CPU (4700MQ) and 16 gigabytes of
RAM. VMware Workstation [32] was used as the virtualization
tool, which created one management node and two computing
nodes. The details of the nodes are shown in Table II. For
public cloud instances in our experiments, T2.micro instance
from AWS [28] was employed, which provided a basic
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Algorithm 4: Simulation Execution Algorithm
1 Require: V RP.w,N, IT, SA, P .
2 Note: V RP − V irtual Resource Pool,
P − Simulation related Packages,
V RS − V irtual Resource Scheduler,
V RM − V irtual Resource Manager,
SRM − Simulation Resource Manager,
CRM − Compute Resource Manager,
IM − Image Manager, NM −Network Manager,
PRA− Public Resource Agent,
SRP − Simulation Resource Pool.

3 while !V RS.end() && User.access(V RP.w) do
4 while V RS.cur(V RP ) <= V RS.req() do
5 if V RS.req() <= V RS.cur(V RP.loc())
6 then
7 V RM.N.set() ⇐ V RS.req()−V RS.cur(V RP ))
8 V RM.IM.set(P ) ⇐ SRM.map(SRP )
9 V RM.boot(V RM.CRM(N, IT ),

V RM.NM(SA), V RM.IM(P ))
10 V RS.update()

11 else
12 V RM.N.set() ⇐

V RS.req()− V RS.cur(V RP.loc())
13 V RM.IM.set(P ) ⇐ SRM.map(SRP )
14 V RM.boot(V RM.CRM(V RS.cur(V RP.loc()), IT ),

V RM.NM(SA), V RM.IM(P ))
15 PRA.set(V RM.N,PRA.getpair(PL),

V RM.IM(P ))
16 V RM.NM.bridge.setgroup(V RM.cur(user),

PRA.cur(user))
17 V RS.update()

18 V RS.end() ⇐ User.def()

19 while !SRM(end)&&User.access(V RP.w) do
20 V RM.insList.set(user) ⇐

V RM.cur(V RP.user.simX)
21 SRM.simList.set(user) ⇐

SRM.upload(SRP.user.simX)
22 SRM.mapSimPair(V RM.insList(user),

SRM.simList(user))
23 SRM.execute()
24 SRM(end) ⇐ User.def()

25 if SRM(end)
26 then
27 SRM.upload()
28 SRM.SRP.save()
29 V RM.IM.save()
30 V RM.recycle()
31 User.access ⇐ NONE

configuration: one VCPU and 1 GB of memory. Based on
different deployment environments, instance types, scheduling
algorithms, and experiments were implemented to evaluate
the energy consumption, resource provision efficiency, and
simulation performance.

The first experiment concerned the preparation time of
a simulation environment, including the computing resource
scheduling time, raw resource providing time, and softlayer
resource packaging time. The computing resource schedul-

TABLE II. SINGLE MACHINE ENVIRONMENT

Host VCPU RAM Bandwidth Hard Disk

Management 2 2 G 100 Mbps 30 G
Computing 1 4 4 G 100 Mbps 40 G
Computing 2 1 2 G 100 Mbps 20 G

TABLE III. VIRTUAL RESOURCE LIST

Virtual Instance Type VCPUs RAM(MB) Hard Disk(GB)

Mini 1 512 0
Small 1 1024 10G
Medium 2 2048 20G
Large 4 4096 40G
Self-defined 1 to 4 512 to 4096 0 to 40G

ing time involves the components of the whole platform;
the scheduling time starts when the User Portal receives
the user’s resource requests and ends after these requests
are properly stored, recorded, and processed in the Request
Queue managed by the Virtual Resource Manager. The rare
resource provision process includes the selection of computing
resources in the raw computing pool, the mapping of OS and
computing resources, and the establishing of instances. The
softlayer resource packaging procedure focuses on the build-
ing of a simulation-run-ready environment, which contains
the simulation-related package dependency analysis, package
searching, package configuration, and package installation. In
this experiment, the Linux system was used as the operating
system for the virtual instances; CentOS 6 [33] and Fedora
17 [34] were used. The simulation applications used one
testing restaurant simulation application implemented in Por-
tico java-based RTI [35] as the HLA simulation; one simple
Sender/Receiver application implemented in OpenDIS [36]
as the DIS simulation; and one HelloWorld application of
OpenSplice [37] as the DDS simulation. The virtual instance
type for the cluster and the single machine employed in this
experiment is shown in Table III. In this experiment, random
scheduling was selected as the scheduling algorithm for the
computing instances.

The results of the first experiment are shown in Table IV, V,
and VI. Time sche refers to the computing resource schedul-
ing time, and Time f17 and Time cen6 indicate the raw
resource providing time with a Fedora 17 OS and a CentOS
6 OS respectively in Tables IV and V. As the results show,
on one hand, the cluster mode achieves a better performance
in resource scheduling due to the better computing capability
of the management node. On the other hand, the raw resource
provision time of the single machine mode is much shorter
because its scale of computing resource pool is much smaller,
containing only two computing nodes. In this case, the raw
resources can be recycled, regenerated, and reused efficiently
after they are released for each round. The results in Table VI
show the softlayer resource packaging time. The softlayer
packing process occurs on the management node for both sin-
gle machine mode and cluster mode. The process time depends
on the size of the packages and the compute capability of the
management node. Because the CPU in the cluster is better,
the process time of the cluster is shorter. The package size of
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TABLE IV. COMPUTING RESOURCE PREPARATION IN THE SINGLE
MACHINE MODE

Virtual Resource Type Time sche(s) Time f17(s) Time cen6(s)

Mini 2.064 3.445 3.945
Small 2.278 3.705 3.998
Medium 2.162 3.753 4.011

TABLE V. COMPUTING RESOURCE PREPARATION IN THE CLUSTER
MODE

Virtual Resource Type Time sche(s) Time f17(s) Time cen6(s)

Mini 1.389 16.871 17.539
Small 1.421 17.278 17.932
Medium 1.322 17.502 18.244
Large 1.433 17.892 18.577

DIS, DDS and HLA differs, which leads to different process
time in each mode. This indicates that based on the proposed
cloud simulation scheme a simulation-run-ready environment
can be completely brought up and ready for execution within
250 seconds in the worst case among the three simulation
standards. Different types of distributed simulation standards,
operating systems, and computing instances are automatically
configured, instantiated and managed based on the simulation
requirements.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

VCPUs

T
im

e
(s

)

mini−random

mini−commu

large−comp

Fig. 2. Scheduling Algorithm Performance Evaluation

The second experiment evaluated the performance of
scheduling algorithms, shown in Algorithm 3, which were
natively supported in this cloud scheme when simulations
scaled up in the cluster mode. In this experiment, mini vir-
tual instances and large virtual instances were introduced as
computing instance examples. The scheduling time recorded
in this experiment was the same as T sche, as explained in
the first experiment.

The second experiment consisted in evaluating the delay on

TABLE VI. PACKAGES HANDLING PROCESS

Platform Mode Time hla(s) Time dis(s) Time dds(s)

Single Node 189.845 141.728 234.013
Cluster 144.672 97.412 189.844

TABLE VII. CLOUDSIM SIMULATION PARAMETERS

Scale 20 computing nodes and 1 management node

Number of VM Required 10 (Small, Medium, and Large)
VM Migration Time 23 Seconds
VM Scheduling Time 1.4 Seconds
Rated Power 355 W
Scheduling Time Interval 60 Minutes
Scheduling Algorithm Random Scheduling

using different scheduling techniques. As depicted in Figure 2,
when simulations scaled up, the time of scheduling increased
in an almost linear trend, except for some slight fluctuations
caused by background load. The background load originated
from the cloud system, which had to continue running its
services for periodically detecting and updating the status of
the physical machines that composed the environment. Such
services coordinated the resources by observing and recording
their power status, network availability, current free RAM,
and other characteristics. As the results show, Computation-
intensive scheduling (from line 25 to line 35 in Algorithm
3) achieved the best performance, as it minimized the rounds
of resource scheduling. As for random scheduling (from line
4 to line 14 in Algorithm 3) and communication-intensive
scheduling (from line 15 to line 24 in Algorithm 3), the
latter presented overall performance with an improvement
of 10 percent. This difference was generated because in
the communication-intensive scheduling, the search queue
for available resources in the resource queue was shorter –
the first available physical host in the resource queue was
selected as the destination host. For random scheduling, the
average scheduling search length was que.len/2, which was
much longer than the communication-intensive. Another rea-
son for obtaining these results was due to the built-in patten
in recording scheduling information. The Communication-
intensive scheduling recorded only when one physical host
was exhausted while random scheduling needed to record
immediately after the conclusion of each scheduling round.
For different types of scheduling algorithms in this platform,
the scheduling time for one instance was less than 1.5 seconds.
As described in [47], the proposed script-based solution can
save modelers substantial amount of time to deploy large
scale complex simulation environment compared to a manual
deployment.

The third experiment addressed the energy consumption of
the proposed scheme. Due to the lack of temperature sensors
in the hardware, CloudSim [40] was employed to estimate
and observe the performance of the energy-saving approach
in the scheme. The parameters in the experiment, such as the
VM migration time and VM scheduling time, were based on
the real test results of the machines in the cluster, shown
in Table VII. The simulation used a long-term computing-
intensive simulation that consumed almost 100% CPU and
ran for approximately 24 hours. The type of the computing
instances used in this experiment are the same as the ones
listed in Table III.

Tables VIII and IX show the results of the simulation task
scheduling and executing processes with and without energy-
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TABLE VIII. SCHEDULING WITH MIGRATION

Round 1 and 2 3 and 4 5 and 6 7 and 8 9 and 10

Current VM Type S, M S, S S, M L, S L, M
Migration 1 1 2 0 0
Current Power 712.538 1058.662 1429.614 2485.944 3551.349
Current Hosts in Use 1 2 2 4 4

TABLE IX. SCHEDULING WITHOUT MIGRATION

Round 1 and 2 3 and 4 5 and 6 7 and 8 9 and 10

Current VM Type S, M S, S S, M L, S L, M
Current Power 1065.54 2487.13 3909.884 5333.634 6758.49
Current Hosts in Use 2 4 6 8 10

aware components. As the results indicate, the proposed
energy-saving scheme can reduce large amount of energy
by centralizing simulation tasks and releasing idle computing
resources. In the experiment scenario, 47.45% energy is saved
in total 10 hours on average. With the proposed distributed
simulation based energy-aware components, the migration con-
sumed approximately only 300 seconds due to the migration
for all the sample simulation applications during the period of
10 hours. As a result, this approach is viable and beneficial
for distributed simulations that run for periods of time in the
scale of hours.

The fourth experiment concerned the performance loss in
simulation execution that this multi-layered cloud platform
may cause when compared with the native Grid platform.
In the experiment, comparisons are made with the proposed
simulation Cloud deployed on our different established sce-
narios: on the cluster mode, on the single machine mode, and
on the public cloud computing instances from AWS [28]. In
the cluster mode, the large virtual resource type (as shown in
Table III), was used to boot fifteen virtual instances on the
cloud while the grid used fifteen physical hosts directly. In the
single machine mode, a small computing instance type, shown
in Table III, was used for the cloud while the grid used the Host
Computing 2 as shown in Table II. The simulation application
implemented in the experiment was based on the Portico RTI
restaurant example [35], the same as the first experiment. In
the application, the sample federate produced a controlled
synthetic load, which initially involves creating a pseudo-
random number x following a normal distribution and then
introducing a recursive procedure for x turns, to exhaust the
computational capability for the instance in which it ran. After
the computation, the sample federates communicated with each
other about their computation results. Different iterations were
used to measure the simulation execution performance.

The results for this fourth experiment are depicted in Figure
3. Regarding the experiments in the cluster mode, which
involved both communication tasks and computing tasks,
the Grid outperforms the Cloud in terms of the simulation
execution time: when the experiment reached 200 iteration
rounds, the performance of the Grid was 3.94% better than
the Cloud. The reason for the performance loss of the Cloud
is the utilization of Virtualization Technology (VT) in the
Integration and Virtualization Layer, according to [38]. As
for the experiments in the single machine mode that only
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Fig. 3. Simulation Performance between Cloud Platform and Grid Platform

contained computing tasks, the performance of the Grid was
much better: when the iteration number reached 140, the
Grid performed approximately 15 times better than the Cloud.
This result was obtained due to the nested virtualization for
the cloud scheme in the single machine mode. As a result,
an additional layer of abstraction and encapsulation in a
pre-existing virtualized environment was created. This may
influence the performance of executing simulations, according
to the discussion and results from [39]. It is worth mentioning
that for the public instance mode that contained the same
computing task as the Grid in the single machine mode, the
performance of the Amazon public cloud instance was only
19.8% slower than the latter when the iteration round reached
200, which indicates that the public cloud is very promising
for holding computation-intensive distributed simulations.

Based on the results of the aforementioned four experiments,
we can observe that the proposed multi-layered cloud simu-
lation platform enables distributed simulations in the cloud
environments, providing elasticity, automatic management of
diverse resources, fast deployment, security, and reduction of
energy costs. There is little performance loss in terms of the
simulation execution time when compared with the native Grid
platform, mainly due to the delays caused by the virtualization
of the Cloud. However, this overhead is acceptable due to the
benefits of Cloud Computing listed in the early sections of this
paper.

V. CONCLUSION

In this paper, a layered cloud platform was proposed for the
distributed simulations. Concerning usability, energy consump-
tion, security, reliability, and elasticity, relevant components
are implemented to support fast deployment, to ease the
management of underlying resources, to reduce energy usage,
and to enable fine-grained resource handling during runtime.
The design of a multi-layered scheme in different scenarios
was described. In the experiments, the performance of this
cloud simulation platform was evaluated and discussed in
detail. Based on the experimental results, we conclude that
the use of cloud technologies is a promising method for fa-
cilitating distributed simulations, especially when the network
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environment presents greater efforts towards optimization and
performance.
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