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Abstract—Along with the development of cloud computing, more and more applications are migrated into the cloud. An important
feature of cloud computing is pay-as-you-go. However, most users always should pay more than their actual usage due to the one-hour
billing cycle. In addition, most cloud service providers provide a certain discount for long-term users, but short-term users with small
computing demands cannot enjoy this discount. To reduce the cost of cloud users, we introduce a new role, which is cloud broker. A
cloud broker is an intermediary agent between cloud providers and cloud users. It rents a number of reserved VMs from cloud
providers with a good price and offers them to users on an on-demand basis at a cheaper price than that provided by cloud providers.
Besides, the cloud broker adopts a shorter billing cycle compared with cloud providers. By doing this, the cloud broker can reduce a
great amount of cost for user. In addition to reduce the user cost, the cloud broker also could earn the difference in prices between
on-demand and reserved VMs. In this paper, we focus on how to configure a cloud broker and how to price its VMs such that its profit
can be maximized on the premise of saving costs for users. Profit of a cloud broker is affected by many factors such as the user
demands, the purchase price and the sales price of VMs, the scale of the cloud broker, etc.. Moreover, these factors are affected
mutually, which makes the analysis on profit more complicated. In this paper, we firstly give a synthetically analysis on all the affecting
factors, and define an optimal multiserver configuration and VM pricing problem which is modeled as a profit maximization problem.
Secondly, combining the partial derivative and bisection search method, we propose a heuristic method to solve the optimization
problem. The near-optimal solutions can be used to guide the configuration and VM pricing of the cloud broker. Moreover, a series of
comparisons are given which show that a cloud broker can save a considerable cost for users.

Index Terms—Cloud broker, cloud computing, cost reduction, profit maximization, queue model, service demand, VM configuration,

VM pricing.

1 INTRODUCTION

Ver the past few years, cloud computing has experi-
Oenced tremendous development [1]. More and more
cloud providers have jumped on the cloud bandwagon,
and they centrally manage a variety of resources such as
hardware and software and deliver them over the internet
in the form of services to customers on demand [2]. Thanks
to unique properties such as elasticity, flexibility, apparently
unlimited computational power [3], and pay-as-you-use
pricing model, cloud computing can reduce the requirement
of clients for large capital outlays for hardware necessary
to deploy service and the human expenses to operate it [4].
Hence, an increasing number of clients are transferring their
business to the cloud.

One important feature of cloud computing is pay-as-
you-use [5, 6, 7], which contains two meanings. First, ac-
cording to the customer resource demand such as CPU,
memory, etc., the physical machines are dynamically seg-
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mented using virtualization technologies and provided to
customers in the form of virtual machines (VMs), and
customers pay according to the amount of resources they
actually consumed. Second, the VMs can be dynamically
allocated and deallocated at any time, and customers should
pay based on how long the resources are actually used.
Nevertheless, the pay-as-you-use pricing model is presently
only conceptual due to the extreme complexity in monitor-
ing and auditing resource usage [8], and cloud providers
usually adopt an hourly billing scheme; in other words, the
Billing Time Unit (BTU) of the cloud providers is one hour,
for instance, Amazon EC2 [9]. Therefore, the customers
should pay for the resources by the hour even if they do not
actually utilize the allocated resources in the whole billing
horizon [10]. This leads to a waste of resources and raises
the cost of customers to a certain degree.

In addition, almost all cloud providers provide two main
ways to pay for their instances: On-Demand and Reserved
Instances [11, 12]. With On-Demand instances, users pay
for compute capacity by per hour depending on which
instances they run, and they are recommended for the
applications with short-term workloads. Reserved Instances
provide users with a significant discount (up to 75% in
Amazon EC2) compared to On-Demand instance pricing,
but customers should rent instances for long periods, e.g.,
from six months to several years, according to the current
plans offered by real cloud providers such as Amazon [9]
and Microsoft Azure [13]. Obviously, this discount cannot
be enjoyed by the short-term customers.

Due to above two reasons, the short-term customers
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always should pay more than they actually must pay. To
reduce cost for this part of customers, we introduce the
cloud broker, an intermediary agent between cloud providers
and customers. Fig. 1 shows the relationship among the
cloud broker, cloud providers, and customers. The cloud
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Fig. 1: The Cloud Broker.

broker rents the reserved VMs from cloud providers for
long periods with the reserved price and outsources the
resources as on-demand VMs to customers for a lower price
with respect to the price that the cloud providers charge
for the same VMs. A cloud broker can help to reduce the
cost of customers from two aspects. First, the cloud broker
takes advantages of the price gap between reserved and
on-demand VMs, renting the reserved VMs with a good
price and outsourcing them as on-demand VMs with a
lower price compared with the same VMs provided by
cloud providers. Second, the cloud broker adopts a smaller
billing cycle (BTU) than the cloud providers. Adopting the
two strategies, the resource utilization can be efficiently
increased and the customer requests can be accommodated
with less cost.

In addition to helping customers to reduce their cost, the
cloud broker can earn a huge difference in price between the
reserved and on-demand VMs [14]. Making profit is one of
the main objectives of all enterprises. Hence, in this paper,
we focus on how to maximize the profit of the cloud broker,
and meanwhile, the customer cost can be reduced efficiently.

Like all business, the profit model of a cloud broker in
cloud computing is based on two components, namely, the
revenue and the cost. For a cloud broker, the revenue is
the service charge to users, and the cost is the renting cost
paid to cloud service providers. A profit model of a cloud
broker includes many considerations, such as the scale (the
number of VMs) of a cloud broker system, the customer
demand (the rate that requests submitted to a cloud broker),
the renting price (the cost price) that the resources are rented
from cloud providers, the selling price (the sales price) that
the cloud broker provides resources to users, the BTU, and
so forth. To maximize the profit of a cloud broker, we should
understand both revenue and cost, and in particular, how
they are affected by those factors.

The revenue of a cloud broker is determined by two
factors, i.e., the customer demand and the sales price. The
customer demand is measured by the task arrival rate of the
cloud broker in this paper. Under a given sales price, the
greater (smaller, respectively) the customer demand is, the
higher (lower, respectively) the revenue is. Similarly, under
a given customer demand, the higher (lower, respectively)
the sales price goes, the more (less, respectively) the revenue
can be obtained. Moreover, the sales price has a great impact

on the customer demand of a cloud broker. If the sales
price of the on-demand VMs offered by the cloud broker
are much cheaper compared with the same VMs provided
by the cloud providers, more customers are attracted to
submit their computing requests to the cloud broker. On the
contrary, if the cloud broker raises the sales price of VMs,
the customer demand decreases correspondingly. Hence,
determining a proper sales price is a key issue for cloud
brokers to maximize their profit, which will be calculated in
this paper.

The cost of a cloud broker is also determined by two
factors, i.e., the cost price of resources and the scale of the
service system. The cost price of resources is determined
by cloud providers. The service system can be modeled as a
multiserver system, which consists of many resources (VMs)
rented from cloud providers. The system scale determines
the service capacity of the cloud broker. A cloud broker with
a larger system scale can serve more customers, which can
obtain more revenue but generate an increasing cost. Hence,
the system scale also should be determined properly such
that the profit of a cloud broker is maximized.

In this paper, we study the problem of optimal multi-
server configuration and resource pricing for profit maxi-
mization of cloud brokers. To maximize the profit of cloud
brokers, we provide a comprehensive analysis on the profit-
affecting factors and formulate an profit maximization prob-
lem. By solving the optimization problem, the optimal VM
price and system scale can be obtained such that the profit
is maximized. Our main contributions are as follows.

e To reduce the cost of cloud users, a novel business
role between cloud providers and cloud users, i.e.,
cloud broker, is introduced.

o A cloud broker is treated as a multiserver system,
which is modeled as an M/M/n/n queuing model.
Based on this model, all the profit-affecting factors
are analyzed.

e A detailed analysis on the relationship between the
sales price of VMs and the customer demand is
given. Based on the analysis, the expected charge to
a VM request is calculated.

e The optimal multiserver configuration and VM pric-
ing problem of cloud brokers for profit maximization
is formulated and a heuristic algorithm combining a
brute force search with the partial derivation method
is proposed to calculate the numerical solutions for
the optimization problem.

e A series of numerical calculations are conducted,
which show that the cloud broker can reduce the cost
for cloud users efficiently and yet make a consider-
able profit at the same time.

The rest of the paper is organized as follows. Section 3
presents the models used in this paper, including the cloud
broker model, the multiserver system model, the revenue
and cost model. Based on these models, the optimal mul-
tiserver configuration and VM pricing problem is defined
and the profit optimization model is formulated. Section 4
introduces our methods to solve the optimization problem
to obtain the optimal decision on the VM sales price and
the system scale. Section 5 conducts a series of numerical
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calculations to demonstrate the results of our problem.
Finally, Section 6 concludes the work.

2 RELATED WORKS

In this section, we provide a snapshot of the existing re-
search from the following aspects.

2.1 Cloud Broker as a Scheduler

Nowadays, there are numerous private and public cloud
providers that typically provide many services. Since dif-
ferent providers usually offer distinct features, e.g.,Virtual
Machine (VM) types, pricing schemes, and cloud interfaces,
it is becoming challenging for users to find a choice that
better suits the requirements for developing/executing their
applications. To assist cloud users, a cloud broker mecha-
nism is used to transform the heterogeneous cloud market
into a commodity-like service [14].

The cloud broker has been studied from different per-
spectives. In the beginning, the cloud broker was studied
as a scheduler between cloud providers and customers.
It refers to two main aspects: helping customers to select
the most appropriate cloud provider and helping providers
make decisions on resource allocation. Hence, the schedul-
ing mechanisms are required to optimize the selection of
cloud broker or placement of VMs amongst multiple data
centers of a cloud to reduce the costs of VM deployment or
satisfy other performance constraints such as response time,
computing capacity, and so forth [15, 16, 17, 18]. To achieve
the different objectives, many related cloud broker policies
have been proposed.

Limbani et al. [16] proposed a cost-aware service prox-
imity based broker policy. Using the proposed policy, a cost
effective data center is selected to route user requests. In
[19], the authors proposed a new service broker policy for
data center selection based on the round-robin (RR) algo-
rithm to minimize the service response time. To satisfy dif-
ferent resource requirements and application performance
constraint of customers, Manasrah et al. [17] proposed a
Variable Service Broker Routing Policy - VSBRP, which aims
to achieve the minimum response time through considering
the communication channel bandwidth, latency and the size
of the job. The proposed service broker policy can also
reduce the overloading of the data centers by redirecting
the user requests to the next data center that yields better
response and processing time. Larumbe et al. [18] took
energy consumption into consideration and proposed an
energy-aware VM placing broker to minimize operational
expenditures while respecting constraints on Quality of
Service (QoS), power consumption, and CO2 emissions.
In addition, many other existing broker policies for data
center selection are based on the location of the data centers,
current execution load, and so on. The above studies on
broker policies focused on how to allocate resources for each
request.

Since there are so many cloud providers with different
features, it becomes a challenge for customers to select
the one that suits the requirements while with the least
costs. Many studies have focused on this problem. Rane
et al. [20] researched how to choose one provider for a

customer among many service providers. In this work, a
cloud resource broker is proposed to govern the assignment
of providers’ resources to consumers dynamically. It uses
various requirements and constraints specified by the con-
sumer in the requirement description template as inputs,
to calculate aggregated requirements using an aggregation
algorithm. And a service scheduling algorithm is defined to
find an optimized match between the aggregated require-
ments with the provider’s offerings.

With the help of cloud brokers, the VM requests of a
customer can be allocated in different clouds instead of the
same one [21]. Tordsson et al. [22] took into account user
requirements such as hardware configuration, aggregated
service performances, total cost, and load balancing, and
proposed algorithms for optimized placement of VMs in
multi-cloud environments. The authors considered the VM
placement problem as a 0-1 integer programming (IP) prob-
lem, and the total infrastructure capacity and the total cost of
the deployed VMs are formulated. The modeling language
AMPL is used to solve the 0-1 IP problem. The experimental
results confirm that the multi-cloud deployment provides
better performance and lower costs compared to the use of
a single cloud only.

2.2 Cloud Broker as a Company

Along with the development of cloud computing, the role
of the cloud broker has changed. It moves from the role
of a scheduler between cloud providers and customers to
the third-party company that provides cloud computing
services. The difference between cloud brokers and cloud
providers is a cloud broker might not have its own resources
but rents them from cloud providers.

To maintain a company’s normal operation, making a
profit is necessary. How to increase the profit of the cloud
broker becomes an important problem and it is researched
from different perspectives in many works.

The services requests submitted by customers are char-
acterized by different requirements such as security and
privacy constraints, the required resources amount, the price
and makespans. To improve profit, the cloud broker should
properly allocate the requested services to the best suited
cloud infrastructures based on the customers’ QoS require-
ments.

The cloud broker studied in [23] is a hybrid cloud broker;
that is, the cloud broker can allocate a service to its private
resources or the public clouds. In the paper, the revenue of
a CB consists of the brokering service price and the resource
provisioning price. If the service is executed on the private
resources of the CB, CB revenue is the sum of the two parts;
otherwise, the CB only gets the brokering service price, and
the resource provisioning price is paid to the public clouds.
Hence, a greedy way to increase the total revenue of the
cloud broker is to maximize the in-house execution of all
services. Due to the limited number of in-house resources
and the specific QoS requirements of services, the greedy
method is unsuitable, so the heuristic brokering algorithm
is proposed in which three allocation patterns, namely, Fea-
sible, static Reservation, and Max Occupation, are adopted
to allocate particularly critical services to private resources
to maximize the CB revenue.
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Nesmachnow et al. [3] proposed a kind of Virtual Cloud
Brokers (VCB). The VCB rents a number of reserved in-
stances of different VMs from several cloud providers for
long periods of time and outsources them as on-demand
VMs for a lower price with respect to what traditional cloud
providers charge for the same VMs. The VCB earns the large
difference in price between reserved VMs and on-demand
VMs. Because the reserved instances bought by the VCB
are limited, in case it cannot fulfill all requests without
violating the contracted Service Level Agreement (SLA), on-
demand VMs are bought from public cloud providers to
satisfy the demand, which leads to a reduction in profit. This
paper researches how to manage the available resources
efficiently to process the most VM requests. This problem
is a resource allocation problem with additional constraints
which is NP-hard. The authors build this problem as a
profit maximization model with resource constraints and
propose a series of fast optimization techniques to solve this
problem, including two-step list scheduling heuristics to get
the initial solutions and the fast reordering local search to
improve the solutions.

Because VM demand is sporadic, a cloud broker has to
rent VMs once it faces the risk of underutilization of the
VM in subsequent time slots. However, if the VM demand
decreases in the following time slot, a great number of VMs
are wasted and the cloud broker might suffer a loss. To
improve the profit of cloud brokers, the authors in [24]
adopted dynamic pricing to control user demand. At the
beginning of each time slot, the broker adjusts the VM sell-
ing price according to the VM demand. If the VM demand is
much greater than the previous time slot, the price is raised
to decrease the demand properly. Doing this can efficiently
control the loss caused by the wasted VMs.

All these works focused on how to improve the profit
of the cloud brokers under a given configuration. However,
for a cloud broker, to achieve the maximal profit, the most
important problem is determining how many resources it
needs to rent and how to price the resources. Since there
are many factors that can affect the profit of cloud brokers,
and these profit-affecting factors are affected mutually, it
is necessary to provide a comprehensive analysis on these
factors and take them into consideration when solving the
broker configuration and pricing problem. Based on this
idea, the profit-affecting factors, e.g., the resource renting
price, the resource selling price, the customer demand, the
resource size, are analyzed comprehensively, and a profit
maximization problem is formulated and solved to get
the optimal configuration of the virtual platform and the
optimal price of the resources.

3 THE MODELS

In this section, we first describe the cloud structure. Then,
we introduce the related models used in this paper, e.g., a
multiserver queuing model, a revenue model, and a cost
model. Last, we give a detailed description on the opti-
mal multiserver configuration and VM pricing problem for
profit optimization.

3.1 Cloud Computing Structure

In the cloud structure (see Fig. 2), three typical parts are
contained, i.e., cloud service providers, cloud brokers, and
customers.

Cloud
Provider

Fig. 2: The three-tier cloud structure.

In the cloud market, there are various cloud service
providers with distinct features such as capacity, price,
SLA, and performance. Customers can obtain services and
resources from cloud providers directly. However, it is a
challenge for customers to find the best choice in terms of
performance and price. In addition, the economic model of
the cloud providers is to bill users solely for the time they
have used the resources based on an atomic time unit that
we call the Billing Time Unit (BTU), most often one hour.
However, many customers might use the resources for only
several minutes and still be charged for one hour. Hence,
the coarse-grained BTU leads to a lot of waste for customers
in terms of resources or money.

Moreover, many cloud providers, such as Amazon EC2
and Window Azure, provide on-demand instances and re-
served instances. With on-demand instances, you pay for
compute capacity by the hour with no long-term commit-
ments or upfront payments. You can increase or decrease
your compute capacity depending on the demands of your
application and only pay the specified hourly rate for the
instances you use. Reserved instances provide you with a
significant discount (up to 75%) compared to on-demand
instance pricing [9]. In this paper, the price of reserved in-
stances and on-demand instances for unit of time is denoted
as 3, and (3, (Unit: dollars per unit time), respectively. For
a part of customers, they only need to rent on-demand
instances due to their short-term workloads, hence, they
cannot enjoy the discount of reserved instances.

The cloud broker is an intermediary entity between
cloud providers and customers, which emerges to help the
customers with short-term workloads enjoying the discount
provided for long-term customers. It buys a lot of reserved
instances from cloud providers for long periods of time to
configure its virtual resource platform and outsources them
as on-demand VMs for a lower price and a fine-grained BTU
such as 30 minutes with respect to what the cloud service
providers charge for the same VMs. The customers could
submit their service requests to the cloud provider or the
cloud broker, and their decisions are affected by the gap
between the on-demand VM prices of the cloud broker and
the cloud provider.
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This three-tier structure is adopted and researched com-
monly from different aspects [3, 14]. In this paper, we focus
on the profit maximization problem of the cloud broker.

3.2 Multiserver Queue System

The broker studied in this paper only rents resources from
a single cloud provider and provides identical VMs for
customers. Therefore, the VMs provided by the cloud broker
are homogeneous, and they have identical configurations in
terms of memory, bandwidth, CPU, etc. More complicated
situations will be studied in further works. In this paper, we
assume that a cloud broker serves users’ requests by using
a multiserver system, which can be modeled as an M/M/n/n
queuing system [25]. This similar models are adopted in
many literatures such as [26, 27, 28].

In this M/M/n/n queuing model, the arrival of VM re-
quests is assumed to be a Poisson stream with arrival rate
A (measured by the number of requests per unit of time);
i.e., the interarrival times are independent and identically
distributed (i.i.d.) exponential random variables with mean
1/A. In the rest of the paper, the default time unit is one hour
(unless explicitly stated). This setting is for convenience
of calculation under different BTU values. Since the cloud
broker attracts customers by the low price, the actual request
arrival rate A of the cloud broker is determined by two
factors: the total customer demand, denoted by A, and
the resource price. The relationship will be introduced in
Section 3.4.

The cloud broker rents VMs from cloud providers to con-
figure its private cloud platform. Assume that the platform
size, in others words, the number of VMs owned by the
cloud broker is n. When customers submit service requests
to the cloud broker, the cloud broker determines whether
the requests are executed in-house or reassigned to public
clouds according to the status of its private cloud. If there
are available VMs in the private cloud, the incoming service
requests will be executed in-house. However, if there is not
any VM available and the incoming service requests cannot
be processed immediately in the private cloud, the cloud
broker will resubmit them to public clouds. These part of
customers are lost by the cloud broker. In this scenario,
the number of requests in the mutliserver system at any
time will not exceed n, that is, the queue length of the
mutliserver system is n. The execution times of tasks on the
multiserver system are i.i.d. exponential random variables
t with mean t. The average service rate of each system is
calculated as ;1 = 1/%, and the server utilization is defined
as p = A/nu = A/n X t. Let m; be the probability that
there are k(k < n) service requests (being processed) in the
M/M/n/n queuing system. Then, we have

k
1 /A
71'](;:7'('()@(;) 7]€:1,2,...,n (1)

n 1 A k7~
(1)
[k—o kKA p
and Eq. (1) holds only when p < 1 [25].

Because the number of resources is limited, when and
only when all of the resources in the multiserver system

where

are busy, the incoming requests are resubmitted to another
cloud. Hence, this part of requests are lost to the cloud
broker. Hence, the loss probability P, of customers of the
cloud broker is equal to the probability that there are n
requests in the system, which is calculated as [25]
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3.3 Cost Modeling

The cost of a cloud broker consists of many parts such as
management cost, configuration cost, etc. However, we only
consider the cost conducted by configuring and operating
the virtual multiserver platform in this paper. To configure
the multiserver platform, a cloud broker rents a lot of
reserved instances from cloud providers for a long-term
period, and pays them the corresponding rents. Since the
rental price per reserved instance for unit of time is 3, and n
reserved instances are required to configure the multiserver
platform. Then, the cost per unit of time of the cloud broker
is

C=np..

3.4 Revenue Modeling
3.4.1 Analysis on the Revenue-affecting Factors

As previously noted, the cloud broker buys a lot of reserved
instances from cloud providers for long periods of time and
outsources them as on-demand VMs to obtain revenue. The
on-demand VMs provided by the cloud broker have a lower
price and a fine-grained BTU with respect to what the cloud
providers charge for the same VMs. Hence, there are two
main factors affecting the revenue of cloud brokers.

The first revenue-affecting factor is customer demand,
which is measured as the request arrival rate A. Under a
fixed price, the more the request arrival rate is, the more
revenue that can be obtained. Hence, to improve the rev-
enue of a cloud broker, an obvious way is to increase its
customer demand. However, customer demand is changing
with different VM sales prices. Hence, the second affecting
factor is the VM sales price.

Let the price of the on-demand VMs provided by the
cloud broker be § per unit of time. The price affects the
revenue of a cloud broker from two aspects. First, the price
has a direct impact on revenue. Under a given demand, a
higher price conducts a higher revenue. Second, the price
affects the revenue indirectly. The explanations are given
as follows. The cloud broker rents reserved instances from
cloud providers with a discount compared with the on-
demand instances and outsources them as on-demand VMs
in a lower price than the same VMs provided by cloud
providers. The low price is the core competitive advantage
of the cloud broker, and its objective customers are those
customers whose service requests are submitted occasion-
ally and the execution time is uncertain or short. This
portion of customers are inclined to rent on-demand VMs
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Fig. 3: The M/M/n/n queue model.

rather than reserved VMs, but they also want to enjoy the
discount that the cloud providers provide for long-term cus-
tomers. The cloud broker can provide customers the needed
resources at a lower price. Since the main advantage for the
cloud broker to attract customers is its lower price compared
with public clouds, the price certainly will affect the request
arrival rate, thus affecting revenue, corresponding. Hence,
proper pricing is an important issue for the cloud broker.

To obtain profit, the VM sales price of the cloud bro-
ker should be greater than its cost price obviously; that
is, the rental price that the cloud broker rents reserved
instances from cloud providers. Meanwhile, the VM sales
price should be lower than the on-demand price of cloud
providers to attract customers. That is because customers
are inclined to select the services of public clouds when the
VM sales price of the cloud broker is same as public clouds.
To sum up, the VM sales price of the broker, denoted as 5,
should be between the range of [,,, B.]-

Market
Share Ratio

Pod

Bod
Fig. 4: The relationship between price and customer
demand

Service Price

To determine a proper sales price for VMs, it is necessary
to understand the relationship between the VM sales price
and the customer demand. In general, the greater the gap
between the on-demand price 3, and the VM sales price
of the cloud broker S is , the more customers that will be
attracted. Let the total customer demand be \,.. And we
define the ratio of the actual customer demand of a cloud
broker and the total customer demand as “market share
ratio” , which is denoted by p. Fig. 4 shows the relationship

between the price 5 and the market share ratio p. The
price-demand function in Fig. 4 is a linear demand curve
which means the percentage p is linearly decreasing with
the increasing price 3. From Fig. 4, the market share ratio
of a cloud broker p is equal to p, when the VM sales price
is set as f3,, and the market share ratio is decreasing to p,
when the price is increasing to 5,,. Hence, the price-demand
function can be formulated as

B _ ﬁre
/Bod - ﬂn’
We adopt the linear price-demand function in this paper

because it is one of the most commonly used function. Other
complicated functions will be researched in further works.

D = Pr + (pod - pre)

3.4.2 Calculation of the Revenue

Based on the above analysis, the price and the customer
demand are the two main factors having an effect on rev-
enue. To calculate the revenue, it is necessary to calculate
the expected charge to each request and the actual customer
demand.

Expected Charge: The expected charge of a request is
affected by three factors: the VM sales price, the execution
time of a request, and the BTU of the cloud broker. To study
the expected service charge of a request, we need a complete
specification on those factors.The following theorem gives
the expected charge to a service request.

Theorem 3.1. Assume that the BTU of a cloud broker is
U units of time. Under a given VM sales price 3 and
average execution time of tasks ¢, the expected charge to
a service request is

1

E=UST——um

(4)

Proof 3.1. Since the BTU of a cloud broker is U units of time,
the charge function of a service request with execution
time ¢ can be calculated as

)

This equation means that a service request is charged
(n + 1)UpB if its execution time t is in the interval
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(nl, (n +
time.
Recall that the execution time ¢ of each request is i.i.d.
exponential random variables with mean t; hence, the
probability distribution function of ¢ is

Lot

1) =3

The expected charge to a service request is

E:/O FOR@)dL

-y / " e+ s

1)U]. The 8 means the VM price per unit of

n=0 u
o (n+1)U
— Z(nﬂ)ua( — e*t/t)
n=0 nU
& —
— uﬁ Z efnu/t
n=0
1— ( —U/f)n
=W
1
- uﬁl —e U/t

The theorem is proven.

Customer Demand: The actual customer demand is
affected by the VM sales price. Under a given VM sales
price 3, the request arrival rate of a cloud broker is

A= PAu = ( e+ (P pe) 5;_%) A

However, there are a small portion of requests rejected
by the system due to the limited resources. Under a given
system size n and average execution time of requests ¢, the
percentage of rejected requests P, can be calculated using
Eq. (2); then, the revenue obtained by a cloud broker in an
unit of time can be calculated as:

R =A(1— P,)E 6)

:( e + (pud pm); 55 ))\""“uﬂelu/t
(2
"

(- [Eaor] 50))

3.5 Problem Description

Because the profit is defined as the revenue minus the cost.
Hence, according to the above analysis, the expected net
profit of a cloud broker in one unit of time is

Pro =R —C

7
:)\(].—PL)E—TL ey ( )
where
/B B 5n’
>\ = pAmnX = re + (pod - pw) m Amux?
od re

NO. *, * 2018 7
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Fig. 5: The mesh of profit versus n and f.
n k11 n
1 1 /A
P = = {Zk() } a(i)
and
E— Uﬁ*
T W

From Eq. (7), we can see that the profit is determined
by two parameters, i.e., the VM price 8 and the system
size n. To maximize the profit of a cloud broker, we should
find an optimal combination of 3 and n. Hence, we define
the profit maximization problem as an optimal multiserver
configuration and VM pricing problem, which is defined as
follows: Given the total customer demand A,,,, the average
request execution time ¢, the on-demand resource price
Bu, the reserved resource price f3,, and the corresponding
market share ratio p,; and p,, find an optimal combination
of VM sales price 3 and system size n for the cloud broker
such that its profit is maximized. The optimization problem
can be formulated as

max Pro(B3, n)

subject to
0<p<l.

Fig. 5 gives the graph of function Pro where ), = 100,
t = 8, 5,3 =4, 6. =9, p. = 0.5, p, = 0,and U = 0.5.
From the figure, we can see that the profit of a cloud broker
is varying with server size n and service price (3, and there
must be an optimal combination of n and 3 where the profit
is maximized. In the next section, we will show how to solve
this optimization problem.

In Table 1, we summarize all the notations used in the
paper to improve readability.

4 OPTIMAL SOLUTION

In this section, a partial derivative combined with the bisec-
tion search method is adopted to solve the profit optimiza-
tion problem.

4.1 The Analytical Method

We first solve our optimization problem analytically, assum-
ing that n and /8 are continuous variables. To this end, a
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TABLE 1: Notations used in this paper.

Notation Description

Bre the unit price of reserved resources rented
from cloud providers

Bod the unit price of on-demand resources rented
from cloud providers

B the unit price of resources provided by cloud
brokers

Dre the percentage of customers attracted by cloud
brokers at the price 3,

Dod the percentage of customers attracted by cloud
brokers at the price 3.

n the server size of virtual platform owned by
the cloud broker

t the execution time of a request and ¢ is the

average execution time

Aiax the maximal task arrival rate, which presents
the total customer demand
A the actual task arrival rate of a cloud broker
p the server utilization of a cloud broker
T the probability that k requests are in the sys-
tem
R the total revenue of a cloud broker
C the total cost of a cloud broker
Pr, the loss probability of customers due to lim-

ited resources

closed-form expression of Py, is needed. In this paper, we
use the same closed-form expression as [26], which is

n k
Z (np') ~ P,
k=0 ’

k

This expression is very accurate when n is not too small and
p is not too large [29]. Since Stirling’s approximation of n! is
V2mn(%)", one closed-form expression of Py, is

en(l—p)pn

®)

P L~
2mn
In the following, we will solve our optimization prob-
lems based on above closed-form expression of Py,. Before
the solutions are given, we firstly rewrite Pro as

pro—agr(1_ 0"
ro = -] —nB.,
p V2mn nf

where
- Bﬂ’
)\ = pm + (pud - prf) m )\maﬂ

od re

and
p=At/n,
and . 1
T

4.1.1 Optimal Price

Given .., t, Bre, Bods Dre, Dod, and n, our objective is to
find the optimal 3 such that Pro is maximized. To maximize
profit, 8 must be found such that

OPro

R =0.

500

-500

2
-1000
—H—n=100
-1500 [| —+— n=200
—*— n=300
— — —n=400
n=500
00,75 5 55 6 65 7 75 8 85 9
VM sales price
Fig. 6: Optimal profit versus resource price.
Since
% — pod - pre )\
8ﬁ ﬂnd - ﬁrr "
we have
aAB:)\_"_pnd_pre)\ /3
B Bu— B "
and
n(l—p) n
0Py, _ 1 6(6 P )p”jLen(l*P)aL
apB 2mn 0B aB
L [(reeen( =12
V2mn wop
-~ ;1 OX 9)
n(l—p),, ,n—1 - Y7
+e np i 0B
:en(lfp)pn Ql — p
V2mn OB up
OAN1—p
=P ——.
Y98 up
Furthermore, we get
OPro o\ oN1—p
— =+ = 1—-P )T+ X8T| — P,——
57 =(A+ 530) 0P nar( — p gl
oA
=M1 = PT + 5T 53 (1= PL) = Pun(1—p)].
(10)

We cannot obtain a closed-form solution to 3, but we can
get the numerical solution to it. In Fig. 6, we demonstrate
the net profit in one unit of time as a function of the price 3
and the server size n. The profit is calculated based on the
precise Py, as Eq. (2), and the parameters are set as follows.
3. and 3,, are set as 4 and 9; p,. and p,, are set as 0.5 and 0; ¢
is set as 8, BTU is set 0.5, and J,,, is set as 100. From Fig. 6,
it is apparent that the Pro function is a convex curve on
which exists an extreme point. So, the 9Pro/98 must have
a decreasing interval during which we could find the zero
point by the standard bisection method [30]. The algorithm
is given as Alg. 1. By the algorithm, the optimal value of 3
in Fig. 6 is 7.5885, 6.5064, 5.4675, 4.5985, 4.5000 for n = 100,
200, 300, 400, 500, respectively.

In Fig. 7, we demonstrate the optimal price and maximal
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Algorithm 1 Finding the optimal price

Input: Mmax, t, 1, Bre, Bod, Pre, and pyg; R — % 0 ||
Output: optimal price opt_3 of resources and optimal profit e
opt_pro; 7.5
1: opt_B = —o0, opt_pro = —oo;
2: Bstart < the minimal price satisfying p < 1; 7
3: Bend < Bows .§
4: calculate Derstqrr and Der,,,; using Eq. (10); S s
5: if Derstart X Derpy,y > 0 then §
6: opt_f3 = Bstart; ) ‘_é’ 6
7. calculate optpm using Eq. (7); =1
8: exit; ©
9: end if 55
10: while Dersygr — Der g > error do
11: Biddle = (ﬁsturt + 5sturt)/2/' 5
12:  calculate Der,,; 4, using Eq. (10);
12 if gsi:iia:t—xﬁD-ZZTl'ddle > 0 then “f00 150 200 250 800 350
15 else midate’ System scale
16: gqu < Bimiddies (a) Optimal size versus n and Amax.
17: end 1
18: end while
19: opt_B = (Bstart + Bend)/2;
600 E
400

profit in one unit of time as a function of n and J,,,. There-
fore, for each combination of n and \,,,, we find the optimal
price for a cloud broker and the corresponding maximal

Optimal profit
o

profit it can obtain. The parameters are set to be same as =200 A, =80

Fig. 6. From the figures, we can see that under a given J,,,, R

the optimal price is decreasing with the increase in system oo —%— % =100 SO0
size. This is explained as follows. It is obvious that more sooll T Amacc™10 S
VMs lead to more cost. To utilize the resources sufficiently —— A, =120

and improve the revenue, the VM price is lowered to attract 100 150 200 250 300 350 400 450 500
more customers, which is so-called small profits but quick System scale

turnover (SPQT) strategy. I-.Iowever., the thlmal proﬁ’.c is (b) Maximal profit versus n and Amax.

not monotone increasing with the increasing system size.

When the system size reaches a certain point, the extra cost Fig. 7: Optimal size and maximal profit vs. 7 and Ayay.
conduct by increasing VMs further starts to exceed the in-

creased revenue by adopting the SPQT strategy. Hence, the TABLE 2: Quality of Solutions (Optimal Price)
total profit increases at the early stage and then decreases. Brute Force Search | Partial Derivatives

Moreover, the figures show that the optimal price and the B Pro B Pro Error(%)
optimal profit are all related with the A,,. Under a given 50 | 8.1371 | 202.6171 | 8.4496 | 166.2390 | 17.954%

system size, a greater \,,, will lead to a higher optimal price 100 | 7.5885 | 347.8085 | 7.8580 | 316.6733 | 8.952%
and more profit. 150 | 7.0442 | 436.0837 | 7.2576 | 415.8876 | 4.631%

200 | 6.5064 | 468.1743 | 6.6521 | 458.9012 | 1.981%

. e 250 | 5.9787 | 445.1308 | 6.0431 | 443.4117 0.386%
In Alg. 1, the partial derivative is calculated based on the 300 (54675 T 3685473 154309 | 368.0027 | 0.137%

estimation Val}le of Py, f'irst, .and then the extremal solutions 350 149883 | 241.1389 | 49688 | 241.0031 0.048%
are solved using the bisection search method. Hence, the 200 145985 | 68.8678 | 45979 | 63.8678 0.000%
solutions obtained by Alg. 1 have a certain of error with the 450 | 45001 | -128.8486 | 45001 | -128.8486 | 0.000%
precise solutions. To verify the precision of the solutions,
we compare the optimal solutions obtained by our method
with that obtained by a brute force search method. The ,;, Optimal Size

comparison results are given in Table 2. In the comparison,

the System size n is set from 50 to 450 in step of 50, \,,, is  Given Ayax, t, Bre, Bods Pres Pod, and 3, our objective is to find
set as 100, and other parameters are same as Fig. 7. From the n such that Pro is maximized. To maximize profit, n must be
results, we can see that the error is less than 2% when the found such that P

n is greater than 200. When the n is smaller than 200, with ro

the decrease of n, the error becomes greater. That is because on
the error between the estimation value and precision value Since
of Pr, is very large when n is small.

=0.

(ep)n _ eln(ep)" _ enln(ep)’
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we have " of customer demand; hence, on the premise of satisfying
9(ep) = (In(ep) — 1)(ep)™, customer demand, the rented VMs should be reduced to
on cut down the rental cost. In addition, we can find from
and then Fig. 9(a) that under a fixed price, more VMs are needed
when the A\, is increasing, as a greater A,y also leads to
P (en(l—p) pn) 9 ((ep)fzewp) more VM requests in a unit of time arriving at the cloud
P _ 2t/ _ 2mn broker. The cloud broker should rent more VMs to provide
on on on enough computing capacity to the increasing VM requests.
Aep)™ V2
_ 2 on V21— (ep)" 5
2mn ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
o (nlep) = Diep)VEmR - ()" VE 1) ]
2mn 350F ‘r»‘”' 1
_n(l—p) n ln(ep) -1 N i 1 - ‘{H,?
€ p D 3001 "~ Dix 1
21 2n /2mn A
PL|1 I Easmr T *
= n(ep) —1— —|. I SN TGS
| In(ep) m % s \\\\\’r |
© ~ ~
Then, we get % ) [ - ]
S -
OPro 1 1007 ;i::i?go 1
on ABT P, <1 + o ln(‘fp)) = Bre- (12) 50— Ana!10 5 1
n n ——Aa=120 =
4.5 é 515 é 615 % 715 é 815 9

Similarly, we cannot get the closed-form expression of
n, so we can use the bisection method [30] to find the
numerical solution of n. In Fig. 8, we demonstrate the net
profit in one unit of time as a function of the price 8 and
the system size n. The parameters are same as Fig. 6. From
Fig. 8, it is apparent that the Pro function is also a convex
curve that contains an extreme point. Adopting the bisection
method, the optimal size n in Fig. 8 is 400, 320, 240, 163, 84
for B =4,5, 6,7, 8, respectively.

600

400

-200

-400

Profit

-600

-800

— p4
—+—B=5
—*— B=6
- =7 N
—b— p=8 il
n / . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
VM size

-1000

-1200

-1400

Fig. 8: Optimal profit versus total investment.

In Fig. 9, we demonstrate the optimal size and maximal
profit in one unit of time as a function of § and A,,.. Under
different J,,., we observe the changing trend of the optimal
size for a cloud broker and the corresponding maximal
profit it can obtain. The parameters are same as those in
Fig. 6. Fig. 9(a) shows the trend of the optimal system size
with the increasing VM sales price under different ;.
From the figure we can see that under a given Ay, the
optimal system size decreases with the increase of VM price.
Thus, if a cloud broker sets a higher price, the number
of VMs it rented from public clouds should be reduced.
That is because a higher sales price leads to a decrease

VM sales price

(a) Optimal size versus 8 and Amax.

Optimal profit

.
45 5 5.5 6 6.5 7 75 8 8.5 9
VM sales price

-100 n n .

(b) Maximal profit versus 8 and Amax.

Fig. 9: Optimal profit and maximal profit vs. 5 and Ayx.

Fig. 9(b) shows the corresponding profit under the con-
figurations in Fig. 9(a). The figure shows that the optimal
profit shows a consistent trend with the A,y value, whereas
under a given A4y, the optimal profit first increases with the
increasing sales price and starts decreasing after an extreme
point. This is explained as follows. At the beginning, the
VM sales price is low, and the revenue is increased with the
increasing price. Although the cost is also increased corre-
spondingly, the increased cost is lower than the increased
revenue, so the total profit shows an increasing trend. Sur-
passing a special price, increasing the VM sales price can no
longer raise the total profit because the increased cost starts
surpassing the increased revenue. Hence, the profit shows a
decreasing trend.

Similar with Table 2, we compare the optimal size ob-
tained by our method with that obtained by a brute force
search method, and the comparison results are given in
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Table 3. In the comparison, the VM price 3 is set from 4.0
to 8.5 in step of 0.5, the A, is set as 100, and the other
parameters are same as Fig. 7.

TABLE 3: Quality of Solutions (Optimal Price)

3 Brutal Force Search | Partial Derivatives Error(%)
n Pro n Pro
4.0 | 400 -13.6067 400.08 | -13.9267 2.352%
45 | 360 162.8083 360.08 | 162.4883 | 0.197%
5.0 | 320 299.0461 320.08 | 298.7261 0.107%
5.5 | 280 395.2308 280.08 | 394.9108 0.081%
6.0 | 240 451.5263 240.08 | 451.2063 0.071%
6.5 | 201 468.2427 200.08 | 467.8389 | 0.086%
7.0 | 163 446.1830 160.08 | 445.1413 0.233%
75 | 124 385.5531 120.08 | 383.6483 | 0.494%
8.0 | 84 286.8998 80.08 | 284.3525 | 0.888%
85| 43 152.0922 40.08 149.6756 1.589%

4.1.3 Optimal Size and Price

Given Ayax, t, Bre, Bod, Pre, and pog, our third problem is to
find n and $3 such that the profit is maximized. We just need
to find n and B such that OPro/On = 0 and OPro/08 = 0,
where OPro/On and OPro/J3 have been derived in the last
two sections. The two equations can be solved by the grid
bisection method which is adopted in [26]. The algorithm is
given as follows.

Algorithm 2 Finding the global optimal size and price

Input: Apuax, t, Bre, Bod, Pre, and pyg;
Output: optimal number opt_n of rented VMs and optimal

price opt_g3;

1: find a proper interval of VM size [nstart, Nengl;
2: calculate the optimal price opt_fstart under ngyyt by Alg. 1;
3: calculate the optimal price opt_f,,,; under n,,; by Alg. 1;
4: calculate Derstqrt and Der,,; using Eq. (12) with parameters
(nstart, opt_Bstart) and (nepq, opt_Lenq), seperately;
5: if Dergsart X Der,yg > 0 then
6: opt_n = Nstart and opt_f3 = opt_Bstart;
7:  calculate opt_pro using Eq. (7);
8:  break;
9: else
10:  while Dersgpt — Dert,yy > error do
11: Niddle = (Nstart + Nstart) /2;
12: calculate the optimal price opt_g,i44. under n;4. by
Alg. 1;
13: calculate Dery,;35, using Eq. (12) with parameters
(Mmiddies OPt_Brmiddie);
14: if Detstart % Detyyigge > 0 then
15: Nstart <— Mniddles
16: else
17: Mend <= Mmiddles
18: end if

19: end while
20:  opt_n = nsterr and opt_B = opt_Bstart;
21: end if

In Table 4, we demonstrate the optimal size and price
that a cloud broker should be configured under different
Amax , and the corresponding profit per unit of time that the
cloud broker can obtain. The A;;; is set from 60 to 130 in
step of 10. From the table, we can see that with the increase
of Ayux, the optimal price undergoes no evident change. The
optimal size is increasing with the increased A, as well as
the optimal profit.

Moreover, Table 4 also shows a comparison between
the optimal solution of our method (Partial Derivative
Optimization, PDO for short)and that solved by the brute
force search method (BFS). The results show that the profit
obtained by our strategy is close to the global optimal profit
adopting the (BFS), and the error rate is less than 2%. For
example, the profit calculated by PDO is 460.6158 when Ayax
is 100, which is only 1.65% less than the accurate global
optimal profit calculated by BFS. Moreover, we compare the
computation time (T) of two methods, and the performance
parameter is defined as Computation Time Saving Ratio
(TSR), which is calculated as

Time of BFS — Time of PDO
Time of BFS

The comparative results show that the computing efficiency
of our method is much higher than BFS but only a little
accuracy loss.

TSR =

5 PERFORMANCE ANALYSIS AND COMPARISON

In this section, a series of numerical calculations are con-
ducted to verify the function of the cloud broker.

5.1 Performance Analysis

The emergence of the cloud broker provides customers one
more choice when selecting the providers of cloud comput-
ing. It can not only provide the same service as the public
clouds but also save a great amount of cost for customers. In
the following, we conduct a series of numerical calculations
to compare the cost of users when they submit requests to a
cloud broker or public clouds, respectively.

According to Theorem 3.1, it is known that the expected
charge to a service request is determined by three factors:
the BTU U, the VM sales price 3, and the average execution
time ¢. To verify the effect of the three factors on the
user cost, we conduct three groups of calculations in the
following. Amazon EC2, AEC for short, is adopted as the
comparison. AEC is compared with the cloud broker under
different parameters to verify how much cost they can save
for users. The performance metric is formulated as

E of AEC — E of a Cloud Broker
E of AEC '
Here, the BTU of AEC is set as 1 unit of time and its
on-demand price §,7 and reserved price B, are set as 9 per
unit of time and 4 per unit of time, respectively. The average

execution time ¢ is set as 8 unit of time. Substituting these
parameters into Eq. (4),

E of AEC = 76.5937.

Cost Saving Rate =

5.1.1 User Cost vesus 3

In the first group of calculations, we observe how the VM
sales price /3 affects the user cost under the given BTU. From
Eq. (4) it is apparent that the user cost is linearly increasing
with the price . In Table 5, we show the average cost of
users when S is varying from By, to Gy, in step of 1 (¢ is set
as 8, and the BTU U is set as 0.5 and 1, respectively).

We have calculated that the average cost of users in AEC
is 76.5937. The table shows that when users submit their
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TABLE 4: Quality of solutions (Optimal size and price)

Brutal Force Search

Partial Derivatives

Amax Nopt | Bopt Progyt T(unit: s) | nopt Bopt Progyt T(unit: s) Error(%) | TSR(%)
60 122 | 6.474 | 268.8419 22.381 128 | 6.5223 | 263.3711 0.519 2.03% 97.68%
70 142 | 6.474 | 318.2826 22.112 150 | 6.5004 | 312.1968 0.509 1.91% 97.70%
80 163 | 6.468 | 368.0537 22.064 171 | 6.4971 | 361.4982 0.556 1.78% 97.48%
90 183 | 6.474 | 418.0824 22.155 192 | 6.4923 | 411.2474 0.493 1.63% 97.77%
100 | 204 | 6.462 | 468.3418 21.95 205 | 6.5865 | 460.6158 0.481 1.65% 97.81%
110 224 | 6.468 | 518.7865 21.978 234 | 6.4899 | 510.7347 0.497 1.55% 97.74%
120 245 | 6.462 | 569.3975 21.974 252 6.514 | 561.4408 0.463 1.40% 97.89%
130 | 266 | 6.456 | 620.1480 21.926 276 | 6.4852 | 611.2303 0.438 1.44% 98.00%

TABLE 5: User Cost vesus (3 (i=8, E of AEC=76.5937)
B 4 5 6 7 8 9
05 E 33.0104 41.2630 49.5156 57.7682 66.0208 | 74.2734
’ Cost Saving Rate | 56.902% | 46.127% | 35.353% | 24.578% | 13.804% | 3.029%
1 E 34.0417 | 425521 | 51.0625 | 59.5729 | 68.0833 | 76.5937
Cost Saving Rate | 55.556% | 44.444% | 33.333% | 22.222% | 11.111% | 0.000%

requests to a cloud broker with a lower VM sales price
compared with AEC, a great deal of cost can be saved. And
the lower the price is, the more cost that can be saved.

5.1.2 User Cost versus BTU

In the second group of calculations, we observe how the
BTU affects the user cost under a given VM sales price. We
set the VM sales price 5 of the cloud broker as [,; and
2/3p,4, respectively. The BTU of cloud brokers is varying
from 1/6 to 1 in step of 1/6. In addition, the average
execution time ¢ is set as 8. The user cost of cloud brokers in
different situations and the cost saving rate compared with
AEC are given in Table 6.

The results in Table 6 show that the user cost is affected
greatly by the BTU of cloud brokers. The smaller the BTU
is, the more cost that can be saved for users on average.
For example, assume that the execution time of a request is
2.1; if it is submitted to a cloud broker with a BTU of 1, the
total cost is 1 x [2.1/1]8 = 30, and if it is submitted to a
cloud broker with U={5/6, 4/6, 3/6, 2/6, 1/6} , the total
cost is 2.505, 2.673, 2.505, 2.333, and 2.170, respectively.
Although sometimes a smaller BTU leads to a higher cost,
e.g., the cost of 4/6-BTU is greater than that in 5/6-BTU,
the overall trend of the average cost is decreasing with the
decreasing BTU.

Moreover, even though the VM sales price of a cloud
broker is set the same as the price of AEC, it still can reduce
cost for users by setting a smaller BTU. For example, when
the VM sales price of a cloud broker f3 is set as (3,4, the cost
as high as 5.015% can be saved compared with AEC.

5.1.3 User Cost vesust

In the third group of calculations, we observe how the
parameter ¢ affects the user cost under the given VM sales
price and BTU. The VM sales price /3 of the cloud broker
is set as 2/30,; = 6 and the BTU is set as 1/6, 3/6, and 1,
respectively. The user cost is calculated for the cloud broker
and AEC separately when the t value is set as 0.5, 4, 8, 12,
24, respectively. The results are given in Table 7.

Table 7 shows that when the cloud broker has the same
BTU and lower price compared with AEC, the cost of users
in the cloud broker is always smaller than that in AEC, but
the ratio of saved cost is not changing with the increasing .

When both of the BTU and the VM sales price of the cloud
broker are smaller than that of AEC, the ratio of saved cost
by the cloud broker is affected by ¢, and the smaller the ¢
is, the greater the amount of cost that can be saved for the
users by the cloud broker.

5.1.4 Saved Cost Ratio under Optimal Solution

In the last group of calculations, we show the average user
cost of a cloud broker under the optimal system size and
VM sales price calculated by our method. The BTU of the
cloud broker is set as 0.5, and the average execution time of
requests ¢ is set as 8. In Table 8, the optimal size, the optimal
price, the optimal profit, and the average user cost are listed
when the )y, is varying from 60 to 130 in step of 10. The
results show that for a cloud broker with a given BTU, no
matter how great the A,y is, the average user cost remains
unchanged so long as the average execution time of requests
is fixed. Under the optimal configuration, the cloud broker
can save about 30% cost for users on average.

6 CONCLUSIONS

In this paper, we focus on the profit maximization problem
of cloud brokers. A cloud broker is an intermediary entity
between cloud service providers and customers, which buys
reserved instances from cloud providers for long periods of
time and outsources them as on-demand VMs for a lower
price and fine-grained BTU with respect to what the cloud
service providers charge for the same VMs. Due to the
lower service price and the finer-grained BTU compared
with the public clouds, the cloud broker can save much cost
for customers. This paper tries to guide cloud brokers on
how to configure the virtual resource platform and how to
price their service such that they can obtain the maximal
profit. To solve this problem, the virtual resource platform
is modeled as an M/M/n/n queue model, and a profit max-
imization problem is built in which many profit-affecting
factors are analyzed based on the queuing theory, as well
as the relationship between them. The optimal solutions
are solved combining the partial derivative and bisection
method. Lastly, a series of calculations are conducted to
analyze the changing trend of profit and the ratio of user
cost savings.
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TABLE 6: User Cost vesus BTU (=8, E of AEC=76.5937)
I5} u 1/6 2/6 3/6 4/6 5/6 1
2 E 48.5017 49.0069 49.5156 50.0278 50.5434 51.0625
56 od | Cost Saving Rate | 36.677% | 36.017% | 35.353% | 34.684% | 34.011% | 33.333%
E 72.7526 73.5104 74.2734 75.0417 75.8151 76.5937
Bod Cost Saving Rate 5.015% 4.026% 3.029% 2.026% 1.017% 0.000%
TABLE 7: User Cost vesus t
u t 0.5 4 8 12 24

E of AEC (U=1, B=6) 10.4087 40.6873 76.5937 | 112.5625 | 220.5312

1/6 E (5=6) 3.5277 245035 48.5017 72.5012 144.5006

Cost Saving Rate | 66.108% | 39.776% | 36.677% | 35.590% | 34.476%

3/6 E (5=6) 4.7459 25.5312 49.5156 73.5104 145.5052

Cost Saving Rate | 54.404% | 37.250% | 35.353% | 34.694% | 34.021%

1 E (5=6) 6.9391 27.12487 | 51.0625 75.0417 147.0208

Cost Saving Rate | 33.333% | 33.333% | 33.333% | 33.333% | 33.333%

TABLE 8: User Cost Under Optimal Configuration (¢=8, U=0.5)

A\ Derivation Optimal
" ngpt Bopt Progt User Cost | Cost Saving Rate
60 128 | 6.5223 | 263.3711 53.8262 29.725%
70 150 | 6.5004 | 312.1968 53.6455 29.961%
80 171 | 6.4971 | 361.4982 53.6182 29.997%
90 192 | 6.4923 | 411.2474 53.5787 30.048%
100 205 | 6.5865 | 460.6158 54.3558 29.034%
110 234 | 6.4899 | 510.7347 53.5586 30.074%
120 252 | 6.5140 | 561.4408 53.7575 29.815%
130 276 | 6.4852 | 611.2303 53.5194 30.126%

In this paper, we adopt the linear price-demand price
when we analyze the broker’s profit since it is the most
common function in real market. Whereas, different cloud
markets might show different price-demand relationship.
Hence, we will extend our study to consider more compli-
cated price-demand curves in the further.
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