
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Abstract— Cloud services have been widely employed in IT

industry and scientific research. By using Cloud services users can

move computing tasks and data away from local computers to

remote datacenters. By accessing Internet-based services over

lightweight and mobile devices, users deploy diversified Cloud

applications on powerful machines. The key drivers towards this

paradigm for the scientific computing field include the substantial

computing capacity, on-demand provisioning and cross-platform

interoperability. To fully harness the Cloud services for scientific

computing, however, we need to design an application-specific

platform to help the users efficiently migrate their applications. In

this, we propose a Cloud service platform for symbolic-numeric

computation– SNC. SNC allows the Cloud users to describe tasks

as symbolic expressions through C/C++, Python, Java APIs and

SNC script. Just-In-Time (JIT) compilation through using

LLVM/JVM is used to compile the user code to the machine code.

We implemented the SNC design and tested a wide range of

symbolic-numeric computation applications (including nonlinear

minimization, Monte Carlo integration, finite element assembly

and multibody dynamics) on several popular cloud platforms

(including the Google Compute Engine, Amazon EC2, Microsoft

Azure, Rackspace, HP Helion and VMWare vCloud). These

results demonstrate that our approach can work across multiple

cloud platforms, support different languages and significantly

improve the performance of symbolic-numeric computation using

cloud platforms. This offered a way to stimulate the need for using

the cloud computing for the symbolic-numeric computation in the

field of scientific research.

Index Terms —Cloud computing, just-in-time compilation,

symbolic-numeric computation, LLVM, JVM.

I. INTRODUCTION

LOUD computing is becoming a prevailing provision of

computing infrastructures for the enterprise and academic

institutes towards enjoying a multitude of benefits: on-demand

high performance computing capacity, location independent

data storage, and high quality services access [1-3]. As usual,

Cloud users can access to cloud services through Internet-based

interfaces and Clouds offer the source provision “as a service”.

For examples, Cloud providers offer Infrastructure as a Service

(IaaS) that provides virtualized computing resources that can

host the users’ applications and handle the associated tasks.

Examples of IaaS providers include the Amazon Web Services

(AWS), Microsoft’s Windows Azure and Google Computer

Engine. In addition, Platform as a Service (PaaS) offers the

platform that allows the cloud users to develop and manage the

underlying software. Google App Engine is one example of

PaaS that is geared with a variety of tools such as Python, Java

1 The authors contributed equally to this work.

and SQL. Other types of Cloud services include: Software as a

Service (SaaS) in which the software is licensed and hosted in

Clouds; and Database as a Service (DBaaS) in which managed

database services are hosted in Clouds. While enjoying these

great services, we must face the challenges raised up by these

unexploited opportunities within a Cloud environment.

Complex scientific computing applications are being widely

studied within the emerging Cloud-based services environment

[4-12]. Traditionally, the focus is given to the parallel scientific

HPC (high performance computing) applications [6, 12, 13],

where substantial effort has been given to the integration of

numerical models with the computing facilities provisioned by

a Cloud platform. Of using Cloud computing, the benefits

include the dynamic provision: computing resources can be

dynamically released as long as they are no more needed [7];

and the virtualization: the users are allowed to dynamically

build their specific-purpose virtual clusters [4] and virtual

workspace [5]. Thus, resource sharing and virtualization of the

Cloud promise to efficiently offer on-demand computing

services for demanding scientific computing [9-11]. In these

cases, the Cloud platform demonstrated an alternative choice

for the scientific community of classical scientific computing

workloads. However, the obstacle to attracting scientific

applications is a creation of a user-friendly environment where

complex numeric algorithms could be efficiently programmed

and deployed on the heterogeneous Cloud platforms. For the

scientific field, many easy-to-use programming environments

including Matlab, Maple, and Mathematica are expediting our

research work. For example, they are offering the powerful

symbolic tools for a wide range of scientific computing cases:

numeric integration and differentiation of multivariable

functions, solving the algebraic equations, optimizing nonlinear

systems using symbolic derivatives, and computing integral

transforms. These capabilities and functionalities are

competitive and essential for completion of sophisticated

scientific problems [14-16]. Basically, the users only need to

describe sophisticated symbolic expressions in the high level

environment, and leave the rest of massive calculations to the

powerful toolboxes. As such, the toolboxes help scientific

researchers rapidly program their ideas. Such programmability

is fundamental to the progress and realization of the Cloud for

scientific community. For example, several newly developed

numerical methods for solving the inverse problems of partial

differential equations [17-19] involve significant amount of

symbolic manipulations of the mathematical expressions and

numerical computations against the resulting expressions. The

symbolic-numeric solution of modern scientific problems is

SNC: A Cloud Service Platform for Symbolic-Numeric

Computation using Just-In-Time Compilation

Peng Zhang1, Member, IEEE, Yueming Liu1, and Meikang Qiu, Senior Member, IEEE

C

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 2

becoming more and more popular. The 2015 J.H. Wilkinson

Prize for numerical software was awarded to the authors of

dolfin-adjoint [20], a package which automatically derives and

solves adjoint and tangent linear equations from high-level

mathematical specifications of the finite element discretization

of PDE. In this, the core underlying library FEniCS utilized the

way of source code generation for numerical computation. In

this work, dynamic translation from the symbolic expressions

to the machine codes is favored [21, 22]. In this regard, the

just-in-time (JIT) compilation is a preferred approach than the

source code generation and ahead-of-time (AOT) compilation.

To fully harness the Cloud resources for scientific computing

services, it is by no means a trivial task. The challenges are at

least three-fold: cross-language programming, cross-platform

interoperability and on-demand provisioning. C/C++, Python

and Java are now the dominating programming languages and

are widely used by researchers. To lower the learning curves, a

new platform must favor these popular languages. Just-in-time

(JIT) compilation offers an opportunity of efficient interactive

programming designs; however, it may also cause the difficulty

of hosting dynamic programs within a Cloud environment. The

heterogeneity of the hardware and software stacks may further

escalate this challenge. Lastly, a scheduler is needed to handle

the Internet-based user requests, produce the tasks, and

schedule these tasks in Cloud. In this work, the SNC platform

addressed these challenges and it offered the Cloud service for

symbolic-numeric computation.

The main contributions include:

 SNC is the first platform to integrate symbolic-numeric

computation with JIT compiler and offers cloud services. It

features extremely fast numerical evaluation of symbolic

expressions, zero administration and it is easy to scale.

 Proof-of-concept software is developed to demonstrate the

applicability of design and it shows the efficacy and efficiency

of SNC.

 The multi-language support and cross-platform capability

are demonstrated by examples. A wide range of case studies are

tested for demonstrating applicability. Migrating applications

into Cloud often requires a major effort in re-designing the

users’ application source codes. Through using SNC, the users

can easily migrate their applications by changing their source

codes slightly to delegate the numerical intensive part to the

cloud services.

 It is demonstrated that the SNC is suitable for low-end

devices, including the embedded devices and mobile devices to

efficiently perform numerical intensive computations using the

cloud services.

The rest of the paper is organized as follows: related works

are presented in Section II. The SNC platform and its key

components are presented in Section III. In Section IV, the

evaluation method is presented. Experiments are described and

results are presented and analyzed in Section V. Discussions

are in Section VI and a conclusion is drawn in Section VII.

II. RELATED WORKS

In this section, we reviewed related works in the fields of the

symbolic-numeric computation, JIT compilations and Cloud

services.

A. Symbolic-Numeric Computation

Symbolic-numeric computation is the use of software that

combines symbolic and numeric methods to solve problems

[23-25]. Symbolic-numeric computation is extensively applied

for scientific computation tasks [26-29]. For examples, Amberg

el al. [26] generated complete finite element codes in multiple

dimensions from a symbolic specification of the mathematical

problem in Maple. McPhee et al. [27] combined the symbolic

computing methods to dynamic modeling of flexible multibody

system. Krowiak [28] employed symbolic computing for

determining coefficients in spline-based differential quadrature

method. In this, the possibility of defining complicated

scientific problems in sufficiently readable syntax allowed

researchers to focusing on the scientific problems and trying

novel algorithms rapidly, while avoiding program bugs and

reducing numerical mistakes. As it has been, symbolic

computation is providing an effective program implementation

for a wide range of complex scientific computing problems.

Symbolic-numeric computation is widely supported in many

popular software systems such as Matlab, Maple, Mathematica,

SymPy [30], Theano [31] and SageMath [32]. Matlab, Maple

and Mathematica define their own syntax and provide the

symbolic toolboxes. SymPy, Theano and SageMath support the

symbolic computation in Python-based language.

B. Just-In-Time Compilation

Usually, work on JIT compilation techniques focuses on the

implementation of a specific programming language. In most

existing implementations (e.g. Java and C#), JIT is specific to

the compilation component in a language. For example, the

system is able to collect statistics about how the program is

actually running, and it compiles a function which is frequently

executed to machine code for direct execution on the hardware.

As usual, command line options are provided for a high level

control on JIT. However, it is not possible to access the JIT

compilation components directly via a programming interface.

That is to say, a user cannot directly compile a piece of source

code to the machine code at runtime. But, it is likely to generate

the intermediate representation (e.g. Java bytecode) and load it

into the virtual machine (e.g. JVM) at runtime. Then the virtual

machine compiles/translates the bytecode to the native code at

certain point. Considering this feature, our SNC platform uses

JVM as a backend runtime for symbolic expression evaluation.

As of the year 2000, several projects appear to provide more

controls on the JIT compilation through the Application

Programming Interfaces (API), including LLVM [28], libJIT

and GNU Lightning. These software projects offered a

foundation upon which a number of different virtual machines,

dynamic scripting languages, or customized rendering routines

could be built. In this work, LLVM is used as another backend

runtime in which the JIT compiler is used for evaluating the

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 3

symbolic expressions. Originally, LLVM is developed as a

research infrastructure to investigate dynamic compilation

techniques for static and dynamic programming languages.

Languages including Swift, Rust, Common Lisp, FORTRAN,

Haskell, Julia, Objective-C and Lua used LLVM as a backend

compiler. LLVM is also an integral part of Apple’s latest

development tools for Mac OS X and iOS.

The JIT complication [33-36] could significantly increase the

flexibility, in comparison with traditional ahead-of-time (AOT)

compilation. The common implementation of JIT is to first

have AOT compilation of source code to an intermediate

representation such as Java bytecode [37] and Microsoft’s CIL,

and then have JIT compilation to machine code, rather than

interpretation of the intermediate representation. In LLVM, the

intermediate representation (IR) is designed for using in the

three different forms: an in-memory compiler IR; an on-disk

bitcode representation which is suitable for fast loading by a

JIT compiler; and a human readable assembly language

representation. These different forms of LLVM IR are

equivalent. The bitcode representation of LLVM IR is used as

an intermediate representation for the symbolic expression

between the user clients and cloud servers in SNC.

In the existing computer algebra systems (CAS) and general

scientific computing languages which support the symbolic

manipulations, the result of manipulating a symbolic

expression can be numerically evaluated in many different

ways. However, none of them uses LLVM to JIT compile the

symbol expressions, and all of the ways are inefficient and/or

inconvenient in their current implementations. For example,

some CAS provided a substitution of symbols to numbers in an

expression to yield a numerical value of the expression. This

kind of evaluation does not compile the expression when

performing evaluation. Some tools provide the so-called JIT

compilation for the symbolic expression but they are not real

JIT. They use two ways to achieve the numerical evaluation of

symbolic expressions. One way is that the symbolic expression

is interpreted directly or transformed to an intermediate

representation and then an interpreter consumes the

intermediate code to perform the evaluation. Examples include

the Mathematica’s virtual machine, SageMath’s interpreter,

Matlab’s matlabFunction function and SymPy’s Lamdify

function. The other way is that the software first generates

C/C++/FORTRAN source code, and then it compiles the code

by AOT compiler and lastly it links the compiled binary code

back to the software environment. Examples include the

Mathematica’s compile function, Theano’s function function

and SymPy’s ufuncify function. In SNC, we use the new

generation of JIT compiler LLVM to achieve the extremely fast

in-memory JIT compilation for the symbolic expressions. The

highly optimized machine codes run immediately after the

compilation. The time of evaluating a symbolic expression is

significantly shorter than all of these current implementations.

C. Cloud-based Services

Several classical symbolic-numeric tools have been moved to

the Cloud environments. Wolfram Cloud [38] is an example of

moving Mathematica to the Cloud, and it uses the Wolfram

language. SageMath Cloud [39] is the other example of

supporting Sage codes and offering cloud service for running

SageMath computation online based on Python. Other

languages such as Java and C/C++ are not supported directly in

the Cloud environment currently.

In this work, we will provide a Cloud platform that supports

symbolic manipulation and extremely fast numerical evaluation

through the Cloud interfaces in C/C++, Java and Python.

Furthermore, a Matlab-syntax like script language - SNC script

is designed as an additional way of using SNC. Symbolic

manipulations in C++, Java and Python are supported by

GiNaC [40], SymJava [41] and SymPy [30, 42] respectively.

The fast numerical evaluation is implemented for symbolic

expressions by using LLVM compiler infrastructure or Java

JVM. In this work, SymJava is a symbolic library developed by

us in order to support Java language [41].

III. PLATFORM: CONCEPTS AND IMPLEMENTATIONS

In this section, we present the platform and its component

details of SNC, as well as service models. Examples are given

to illustrate the workflows of this platform.

A. Cloud-based Platform

Generic Cloud platform is illustrated in Fig. 1. As the figure

indicated, our platform employs two kinds of Clouds: Compute

Cloud that performs the tasks and Data Cloud that manages the

data. In Compute Cloud, a PE represents a processing element

in which the user task can be executed and a PE can be a virtual

machine (VM) in the IaaS solution. In Data Cloud, a DB

represents a storage node that stores the user data and results.

The DB node can be a VM in the DBaaS solution. In this

platform, we separate the task compute and the data storage on

different Cloud infrastructures, offering the possibility of

choosing a flexible Cloud provider to Cloud users. In Compute

Cloud, a task scheduler is built to accept the Internet-based user

requests that contain the IR for symbolic expressions; and

schedule new tasks to next available PEs. As an assistant to task

scheduler, a data scheduler in Data Cloud is built to exchange

data with users; store the data; and exchange data with PEs. Fig.

2 outlines the high-level overview of the workflow and

functional modules.

Fig. 1 Generic Cloud-based platform

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 4

Fig. 2 High-level overview of workflows and modules

B. Schedulers

Fig. 3 describes the components diagram, at which the colors

are used to differentiate whether a module is our developed one

or it is adapted from a third party. Five packages are developed:

one for user APIs to submit tasks and data, the other two for

task and data schedulers respectively, and the last two for

offering services on PE and DB nodes respectively.

Task scheduler is a portal. It accepts a user Internet-based

request and it parses the symbolic expression that is written in

C/C++, Python, Java or SNC script. The processed symbolic

expression is combined with appropriate wrapper and complied

by LLVM/JVM locally or remotely to yield bitcode/bytecode.

Then, it sends the new tasks to the next available PE.

Data scheduler manages the user data. Upon the arrival of a

task, PE compiles the bitcode/bytecode to the machine code

together with necessary auxiliary libraries. Simultaneously, PE

checks whether a user data is needed. If yes, the user data is

transferred to the PE with the help of data scheduler. Execution

starts as long as the code and data were prepared. The results

are stored in DB and meanwhile, an acknowledge message is

sent back to the task submitter (the user).

Fig. 3 SNC components decomposition diagram

C. Symbolic Computations

Some dedicated languages such as Maple and Mathematica

have their own grammars for symbolic computations. In SNC,

the ability to perform symbolic computations in C/C++, Python

and Java is supported through third party libraries. Specifically,

GiNaC is adapted in SNC for C/C++, SymPy for Python and

SymJava for Java. These libraries have similar functions for

manipulating symbolic expressions. Unlike Sage or Theano, we

do not introduce different classes or functions to define the

symbols. The original usage patterns that manipulate symbolic

expressions in these libraries are preserved as much as possible.

The class and function names are designed as close as possible

in all the languages. Therefore, it is easy for users to port their

existing codes into SNC in order to take the advantage of the

fast numerical evaluation for symbolic expressions. The SNC

script supports symbolic manipulations through any of the

above-mentioned third party symbolic libraries by using the

syntax parsers for the SNC script in a corresponding language.

D. Just-in-Time Compilation

LLVM compiler infrastructure or Java JVM serves as our

symbolic expression compiler in the backend. We demonstrate

the compilation process for a symbolic expression here using

LLVM. Similar process is for JVM. A symbolic expression is

typically stored as an expression tree in GiNac, SymPy and

SymJava. An example expression x*y+z^3 is shown in Fig 4.

To compile an expression, our current implementation uses a

stack to mimic a stack machine to generate the call sequence to

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 5

the LLVM IRBuilder functions. First, an expression tree is

traversed in post-order and a list of atomic expressions can be

obtained. For example, the expression x*y+z^3 will result a list

[x, y, *, z, 3, ^, +]. Then we feed the list to a pushdown stack to

build LLVM IR of the expression. Table 1 lists the pseudo code

for this building process.

Fig. 4 The expression tree of x*y+z^3

The generated IR of the example expression x*y+z^3 in

LLVM assembly language is shown in Table 2. The optimized

machine code of an IR can be just-in-time compiled through

using the JIT EnginBuilder in LLVM.

The string representation of an expression in SNC script is

parsed by the parse_expr function in SymPy and our own

developed parsers in C++ and Java based on the Shunting-Yard

algorithm. The parsed expression in SNC script is JIT compiled

by the same way.

Table 1: Pseudo code for generation of IR for an expression

with LLVM IRBuilder

Table 2: The function of example expression x*y+z^3 in

LLVM assembly language

Compared with ahead-of-time (AOT) compilation, JIT offers

better performance since many optimizations are feasible only

at runtime. In addition to the optimizations provided by LLVM,

more optimizations are conducted in SNC for mathematical

formulas. For example, power 𝑏𝑝 is optimized to use llvm.powi

instead of llvm.pow when the value of p is an integer despite of

the type of p.

To provide an easy-to-use interface of JIT compilation for a

symbolic expression, wrapper classes are designed in SNC for

C/C++, Java and Python, respectively. Four different types of

JIT compilation functions are provided to compile the symbolic

expression: 1) compile one expression; 2) compile a list of

expressions; 3) compile one expression with vectorized

arguments; 4) compile a list of expressions with vectorized

arguments. Table 3 lists the code segment of the four types of

JIT compilation functions in C++.

Table 3: Four types of JIT compilation functions in C++

LLVM C/C++ APIs are used directly in CWrapper for JIT

compilation. In Python, llvmpy [43] which is a Python binding

for LLVM is used in PWrapper. In Java, two options are offered:

(1) an expression is transformed to Java bytecode by using

BECL library and then the generated Java bytecode is compiled

by Java JIT to machine code [25]; (2) LLVM C API is wrapped

through Java JNI interface, then expressions in SymJava can be

compiled to bitcode by calling LLVM C API from Java.

E. Example

For the same problem, we present the exemplary codes using

different application programming interfaces. The problem is to

find out the derivative of the function R(x, y):

typedef double (*JITFunc)(double *args);
typedef int (*JITBatchFunc)(double *args, double *outAry);

typedef int (*JITVecFunc)(double **args, double *outAry);

...
class JIT {

public:

// Compile one expression
JITFunc Compile(vector<string> args, ex &expr);

// Compile a list of expressions

JITBatchFunc BatchCompile(vector<string> args, vector<ex>
&exprs);

// Compile one expression with vectorized arguments

JITVecFunc VecCompile(vector<string> args, size_t nVecLen, ex
&expr);

// Compile a list of expressions with vectorized arguments

JITBatchFunc VecBatchCompile(vector<string> args, size_t
nVecLen, vector<ex> &exprs);

...

}

define double @myFunc(double, double, double) {

block1:

 %3 = fmul double %0, %1
 %4 = call double @llvm.powi.f64(double %2, i32 3)

 %5 = fadd double %3, %4

 ret double %5
}

Input:

LLVM::IRBuilder irb (reference to a LLVM IRBuilder object)
LLVM::Function func (reference to a declaration of function in

LLVM)

GiNac::ex expr (reference to a GiNaC object of an expression)
map<ex, int> argMap (A map from symbols to function

arguments of func)

Output:
LLVM::Value* (The final result of the expression expr)

Algorithm:

Define a local stack: stk
for node in [post-order traverse the expression tree of expr]

{

case node of
{

 symbol: stk.push(argMap[node])

 number: stk.push(node)
 summation: //e.g. a+b+c+...

 loop for ‘number of add operators’ times

 r = s.pop() //right operand
 l = s.pop() //left operand

 stk.push(irb.createFAdd (l, r)) //push float add to stack s

 multiplication: //e.g. a*b*c*...
 loop for ‘number of multiply operators’ times

 r = stk.pop() //right operand

 l = stk.pop() //left operand
 stk.push(irb.createFMul(l, r) // push float multiply to stack s

 power:

 b = stk.pop() //base
 p = stk.pop() //power

 Function *infun =get declaration of the intrinsic function ‘pow’

for b^p (or ‘powi’ for integer p)
 stk.push(irb.createCall(infun)) //push b^p to stack s

 other GiNac functions: //e.g. sin, cos, ...

 …
}

}

return stk.pop() //the final result of expr as the return value

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 6

0.194
(,) 0.127

0.194

x
R x y

y

with respect to y and evaluate the derivative at a certain point.

Application programming interfaces for three languages

C++, Python and Java are illustrated. Additionally, our SNC

Script is used as the fourth way for implementing this example.

The advantages of the SNC script will be discussed in the next

paragraph. The codes using four different ways are shown in

Table 4. In the first three ways, CloudConfig is a class used for

choosing a cloud server. The symbols x and y are the predefined

symbol objects. CloudFunc represents a function on the cloud

side defined by a given symbolic expression and function

arguments. CloudSD (Cloud Shared Data) is a data model for

shared data on the cloud. The expression of the function and

shared data will be sent to the cloud side through the underlying

messaging protocols based on TCP/IP. The evaluation of the

function is performed on the cloud. The results are obtained by

calling the member function fetchToLocal() of the CloudSD

object.

The fourth way, SNC Script is different from the APIs in

C++, Python and Java. The script is sent directly to the cloud.

The cloud parses the received script and JIT compiles the script

to perform computation on the cloud. It should be noted that the

installation of the client APIs, the symbolic manipulation

libraries and LLVM are not required in this manner.

The ways of using C++, Python or Java APIs provide more

advanced symbolic manipulation operations than SNC script in

the client side. However, the client side needs to install GiNaC,

SymPy or SymJava for support of symbolic manipulation. To

do this, the hardware and operating system requirement for the

client side is relatively high. The SNC Script way does not

require any client side libraries. Thus, for a light-weight device

such as an embedded device and low-end mobile device, this

way is an option to achieve numerical intensive computations

using our SNC Cloud conveniently. This is the advantage of the

SNC script. Other advantages, like a webpage-based interface

can be easily enabled by using the SNC script. In this manner,

the users can access to the SNC cloud easily. Ad-hoc or fast

prototype implementation benefit from using a SNC script.

Table 4: Example codes for four different ways of using SNC cloud

SymLLVM: CWrapper Sympy-llvm: PWrapper SymJava: JWrapper SNC Script

CloudConfig.setGlobalTarget("srv1");

ex R=0.127-(x*0.194/(y+0.194));

ex Rdy=R.diff(y);
CloudFunc fun=CloudFunc(

lst(x,y), Rdy);

CloudSD input=CloudSD(“input”);

input.init(0.362, 0.556);

CloudSD output=CloudSD(“output”);

fun(output, input);

if(output.fetchToLocal())
cout<<output.getData(0)<<endl;

CloudConfig.setGlobalTarget("srv1")

R=0.127-(x*0.194/(y+0.194))

Rdy = R.diff(y)
CloudFunc fun = CloudFunc(

[x, y], Rdy)

CloudSD input = CloudSD(“input”).init(

[0.362, 0.556])

CloudSD output=new CloudSD(“output”)

fun.apply(output, input)

if(output.fetchToLocal()):
print output.getData(0)

CloudConfig.setGlobalTarget("srv1");

Expr R=0.127-(x*0.194/(y+0.194));

Expr Rdy=R.diff(y);
CloudFunc fun=new CloudFunc(

new Expr[]{x,y},Rdy);

CloudSD input = new CloudSD().init(

new double[]{0.362, 0.556});

CloudSD output=new CloudSD();

fun.apply(output, input);

if(output.fetchToLocal())
System.out.println(output.getData(0));

R = 0.127-(x*0.194/(y+0.194))

Rdy=diff(R,y)

fun=compile(Rdy)
fun(0.362,0.556)

IV. EVALUATION METHODOLOGY

We evaluate our approach through implementing the whole

SNC design and testing a wide range of symbolic evaluation

kernel applications on nowadays popular Cloud providers.

A. Implementations

User APIs are provided in C/C++, Python and Java, and help

the users to submit their tasks and data. Task and data transfer

between a client and a server through TCP/IP protocol. For the

purpose of efficiency, the APIs for the CWrapper, PWrapper

and JWrapper encode the data and IR into different types of

messages. The API for the SNC script does not require having

any encoded message. The messages between client and server

follow a request and response mode. The main types of encoded

messages in SNC include: 1) Cloud Shared Data (CloudSD)

request and response message; 2) Cloud Function (CloudFunc)

request and response message; 3) a general purpose query

(CloudQuery) request and response message. The detailed

definitions of the main types of messages are listed in Tables 5

and 6. Facility messaging includes the messages for user

authentication, node registration, and task scheduling and data

management.

On the cloud side, each component runs independently and it

communicates with others through TCP/IP protocol. Task and

data schedulers run in daemon. In the current implementation,

the scheduler follows a straightforward first-in first-service

(FIFS) model at scheduling tasks and data storage. PE/DB node

registers to its specified task/data scheduler and then demonizes

for the next task/data query. For simplicity, PE node takes one

single task at a time. DB node indexes its stored files for fast

search and it offers the query service. More complex scheduler

algorithms and strategies could be investigated in the future but

they are not the focus of the present study.

B. Example

To illustrate the implementation for the process of evaluating

a symbolic expression and retrieving the result in SNC, we take

the CWrapper code in Table 4 as an example. Fig. 5 shows the

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 7

client side code, the messaging between client and server, and

the corresponding operations on the server side.

First, after performing symbolic manipulation, the derivative

Rdy of a function R is passed to the constructor of class

CloudFunc. Symbolic expression Rdy is transformed to LLVM

IR and packaged into a request message of type CloudFunc.

This message is sent to a task scheduler who keeps the message

and sends a response to its client.

Second, the input and output data are defined and passed to

the function. The input data will be sent to a data scheduler for

accessing storage before evaluating the function. An evaluation

request CloudQuery (type 1) is then sent to the task scheduler.

The task scheduler chooses a free PE and sends the function IR

of Rdy to this PE. This PE compiles the IR with LLVM JIT

compiler and it evaluates the function. Any required data in the

function arguments will be fetched from the DB node through

the data scheduler.

Last, the returned value of the function will be stored in a DB

node and can be fetched to the client side by specifying a name

for the returned value which is ‘output’ in the example.

Table 5: Definition of the request messages

Type Field Description

CloudSD

Magic Flag Byte=‘D’

Name Length Int32

Data Type Int32

Data Length Int32 (Length in bytes)

Data Byte[] (CloudSD’s name + data)

CloudFunc

Magic Flag Byte=‘F’

Name Length Int32

IR Length Int32

Data Byte[] (Function name + IR)

ClouldQuery

Magic Flag Byte=‘Q’

Type Int32=0 (Fetch a CloudSD to local)

Int32=1 (Evaluate a function)

Int32=2 (Query machine info)

Int32=3 (Query installed libraries)

Name Length Int32 (for the data name or function

name)

Returned Name

Length

Int32 (for the returned data name)

Data Byte[] (The function name + the

name of returned data)

Argument Numbers Int32 (for arguments of a function)

Arg1 Name Length The first argument name of a

function Arg1 Name

… …

ArgN Name Length The last argument name of a

function ArgN Name

Table 6: Definition of the response messages

Field Description

Magic Flag Byte=‘R’

Type Int32=1 (CloudSDResp)

Int32=2 (CloudFuncResp)

Int32=3 (CloudQueryResp)

Status Code Int32

Name Length Int32

Message Length Int32

Data Byte[] (Name + message)

Fig. 5: Implementation details of the CWrapper example code

in Table 4

C. Benchmarks

We design two groups of kernel applications to demonstrate

the efficacy and advantage of our design and implementation.

First, we show that a JIT-based approach that is used in our

implementation is more efficient than other approaches. To this

end, we will compare our APIs such as SNC_C++, SNC_Py

and SNC_Java with the popular approaches such as Sage 6.5,

Theano 0.7, SymPy 0.7.6, Matlab 2015, Mathematica 10 and

manually generated C++ code with the O3 option. All the tests

are performed on a system with Ubuntu 14.04 LTS installed

and hardware configuration is Intel i5-4570 processor at 3.2

GHz with 8GB RAM.

Second, we show that the SNC platform greatly improves

the performance for local computing facilities and also supports

a wide range of symbolic-numeric computation applications.

To this end, we will test four kernel applications, including

Monte Carlo (MC) integration, finite element assembly (FEM),

nonlinear optimization, and multibody dynamic. These tested

applications cover a wide range of today’s symbolic-numeric

computation.

To perform these tests, we choose three local computing

facilities: (1) Raspberry Pi 1 B+; (2) Raspberry Pi 2 B, and (3)

Samsung ATIV Book 9 Lite (denoted by ‘Samsung Laptop’ in

Client

CloudFunc fun=CloudFunc(lst(x,y), Rdy);

CloudFunc (Request to define function)

CloudResp,Type=2(CloudFuncResp)

fun(output, input);

//sotreToCloud is

called in the function

input.storeToCloud();

CloudSD (Request to store data)

CloudResp, Type=1(CloudSDResp)

CloudQuery, Type=1(Evaluation request)

CloudSD (Response the returned value

name for further use on client side)

output.fetchToLocal()

CloudQuery, Type=0(Request to fetch

data)

CloudSD (Response the data)

Server

Task scheduler

keeps the

CloudFunc

Data scheduler

stores the data in

DB node

Task scheduler
sends the

CloudFunc to a PE

which compiles the

IR, fetches the

data, performs

evaluation and

store result to DB

Data return the

data

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 8

Table 5). These local computing facilities are inexpensive and

not powerful in computing either. By choosing them, we intend

to demonstrate an advantage of cloud computing: providing

better performance for demanding applications on lightweight

and inexpensive devices. This is important because it shows the

performance and capability of our hardware-constrained and

software-limited devices can be improved and enhanced using

cloud computing. In the capital expenditure, these expensive

personal computers would be unnecessary in the Cloud era.

For the cloud, we choose today’s most popular Cloud

providers, which included (1) Google Compute Engine, (2)

Amazon EC2, (3) Microsoft’s Windows Azure, (4) Rackspace,

(5) HP Helion and (6) VMWare vCloud. Table 5 shows the

detail local and cloud hardware configurations.

Table 5: System configurations for local computing facilities and the cloud servers

Environment Machine Type Number of CPU Cores and Frequency Memory (GB) Geolocation

Local

Raspberry Pi 1 B+ 1 at 700MHz 0.5 West US

Raspberry Pi 2 B 1 at 900MHz 1 West US

Samsung Laptop 4 at 998MHz 4 West US

Cloud

Google Compute Engine 1 at 2.50GHz 3.75 Central US

AWS EC2 1 at 2.50 GHz 1.0 West US

Microsoft Azure 1 at 2.20 GHz 3.5 West US

Rackspace 2 at 2.80 GHz 3.75 East US

HP Helion 2 at 2.40 GHz 2.0 West US

VMWare vCloud 1 at 2.60 GHz 2.0 West US

V. EXPERIMENTS

A. Efficiency of JIT-based Implementations

We select two typical examples for numerical evaluation of

symbolic expressions: (1) Taylor expansion and (2) polynomial

with fractional powers. The configurations are:

1) Evaluation of Taylor expansion for
xe at 0,x

𝑒𝑥 ≈ ∑
𝑥𝑛

𝑛!

𝑁
𝑛=0 where 𝑁 = 0, … ,9.

2) Polynomial with fractional powers,

𝑓(𝑥) = ∑ √𝑥
𝑛𝑁

𝑛=1 where 𝑁 = 1, … ,9.

Figs. 6 and 7 show the evaluation time in seconds vs. the

problem complexity N. CPU time in seconds is used for timing.

The evaluation time is presented in a log scale with base 10 for

purpose of clarity. Clearly, the results show that our JIT based

implementations (SNC_C++, SNC_Py and SNC_Java) have

greatly outperformed the popular approaches that are still based

on the interpretation and/or source code generation techniques.

Thus, the JIT-based approach is now the most efficient way for

fast numerical evaluation of symbolic expressions. It should be

noted that SNC_C++ is faster than C++_O3 in Fig. 6. The

reason is that we optimized the computation 𝑥𝑛 by choosing an

efficient algorithm for integer value of 𝑛 at runtime (𝑛 could be

declared as double) while C++_O3 doesn't provide the

optimization on such level since C++ compiler merely has the

static information of the variables.

Fig. 6 Evaluation time (in seconds) of Taylor expansions
Fig. 7 Evaluation time (in seconds) of polynomial with

fractional powers

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 9

B. Performing Computation on the Cloud

Four symbolic-numeric computation applications are tested:

(1) Monte Carlo numerical integration, (2) finite element

assembly, (3) nonlinear minimization solver and (4) multibody

dynamics for a double pendulum. We perform these tests on

both local computing facilities (if local hardware permits) and

the cloud servers (as in Table 5). We use the wall clock time in

seconds to measure the performance. For the cloud-based tests,

the results included both the symbolic-numeric computation

and the client-server communication time.

Configurations

The configurations are as follows.

1) Monte Carlo (MC) numerical integration

𝐼 = ∫ sin(√log(𝑥 + 𝑦 + 1)) 𝑑Ω
Ω

where Ω = {(𝑥, 𝑦)| (
1

8
)

2
≤ (𝑥 −

1

2
)

2
+ (𝑦 −

1

2
)

2
≤

(
1

4
)

2
} ⋃ {(𝑥, 𝑦)| (

3

8
)

2
≤ (𝑥 −

1

2
)

2
+ (𝑦 −

1

2
)

2
≤ (

1

2
)

2
}

Fig. 8 shows the integration domain Ω where the red dots

represent the points in the domain Ω. In the test, the cloud client

transforms the expression of the integration to an IR. The IR

and the required number of random points are packaged and

sent to a cloud scheduler for computing the integration. The

scheduler forwards the request package to an idle PE. The PE

further compiles the IR to machine. By running the machine

code the PE generates random points in the square [0,1]×[0,1]

and performs Monte Carlo numerical integration.

2) Finite Element (FE) assembly

This example is for solving the Poisson's equation with zero

boundary values and a nonzero right hand side with finite

element method (FEM):

∆𝑢 = −4×(𝑥4 + 𝑦4) in Ω,

𝑢(𝑥, 𝑦) = 0 on 𝜕Ω.

where Ω = {(𝑥, 𝑦)||𝑥| ≤ 3, |𝑦| ≤ 3}, 𝜕Ω is the boundary of Ω.

Fig. 9 shows a random mesh of the domain Ω. In the test, the

cloud client transforms several symbolic expressions in the

weak form of the Poisson’s equation to an IR of the expressions.

The IR together with an array of random numbers are packaged

and sent to the cloud scheduler. The scheduler finds an idle PE

to run the assembly task which includes the evaluation of

several expressions. The PE generates a random mesh on Ω

based on the given random numbers and performs finite

element assembly on the random mesh. The Java API is used in

tests (1) and (2).

3) Nonlinear minimization problem

This example considers finding the global minimum of

Griewank function (Fig. 10)

2

1 1

() cos() 1.
4000

dd
i i

i i

x x
f x

i

We symbolically define the object function using the C++

API. Then the cloud client sends the symbolic expression of

Griewank function to the cloud scheduler. After computing

derivatives and compiling the expressions of the derivatives,

the scheduler finds a PE to run the task. Nlopt library is used on

PE to find the global minimum of Griewank function. The

dimension d of the function in the experiment ranges from 10 to

150.

4) Multibody dynamics for a double pendulum

This example is chosen from PyDy project [44]. A double

pendulum is a pendulum with another pendulum attached to its

end. The motion of a double pendulum is governed by four

coupled first order ordinary differential equations (ODE). For

certain energies its motion is chaotic. In PyDy, the ODE is

obtained through symbolic computation by SymPy mechanics

package. PyDy provides several ways to solve the resulting

system of ODEs. The C++, Python or Matlab source codes for

solving the system of ODEs can be generated by PyDy. Instead

of using the way of source code generation, we use SNC python

API. The resulting system of ODEs is sent to the cloud and it is

solved efficiently by using JIT compilation on the cloud side.

Fig. 11 shows the solution of the system of ODEs.

Fig. 8 MC integration domain Fig. 9 FEM random mesh Fig. 10 Griewank function
Fig. 11 Solution of a double

pendulum

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 10

Performance Results

The evaluation time is presented in a log scale with base 2

for purpose of clarity. The Monte Carlo results are shown in

Figs. 12 to 14. The results show that for a small number of

random points (for example, less than 1.0E+5) the local

evaluation is faster than the cloud side evaluation. The

computational complexity for the Monte Carlo example is

proportional to the amount of data transferred (the number of

random points). By inspecting the trend of time used, we see

that with increasing of the number of random points, the cloud

side evaluation is dominantly faster than the local evaluation.

For example, it is approximately 16 times faster than the local

evaluation (Raspberry Pi Model 1 and 2) in the case of 1.0E+8

points on the cloud side (excluding HP Helion and will be

explained later).

The finite element results are shown in Figs. 15 to 17. The

results show that even for a small sized problem the cloud side

evaluation is much faster than the local evaluation. The reason

is that the task is computing intensive and its computational

complexity is quadratic with respect to the number of data

transferred. In addition, the hardware on the cloud is much

superior to the local computing facilities.

It is clear that the performance of the cloud side evaluation

depends on the configuration of the provision servers. In this

finite element assembly test, the HP Helion instance is worse

than the local evaluation on the laptop due to low effective CPU

frequency of the virtual machine.

The nonlinear minimization results are shown in Figs. 18 to

20. The multibody dynamics results are shown in Figs. 21 to 23.

Raspberry Pi systems failed due to its limited memory capacity

and CPU capability. However, through using the SNC, even the

very low-end computing facilities “performed” these time- and

memory-consuming tasks successfully - this has demonstrated

the significance of the cloud services the SNC provided. Again,

the SNC greatly outperformed the standalone Samsung laptop

system. In these tests, the users only need to simply describe the

symbolic expressions and submit them to the SNC. The SNC

automated a complicated symbolic computation and numerical

evaluation. This fully implemented the concept of providing the

efficient symbolic-numeric computation services on the Cloud.

Fig. 12 Monte Carlo Integration on

Raspberry Pi Model 1 B+

Fig. 13 Monte Carlo Integration on

Raspberry Pi Model 2 B

Fig. 14 Monte Carlo Integration on

Samsung Laptop

Fig. 15 Finite Element Assembly on

Raspberry Pi Model 1 B+

Fig. 16 Finite Element Assembly on

Raspberry Pi Model 2 B

Fig. 17 Finite Element Assembly on

Samsung Laptop

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 11

Fig. 18 Nonlinear minimization on

Raspberry Pi Model 1 B+

Fig. 19 Nonlinear minimization on

Raspberry Pi Model 2 B

Fig. 20 Nonlinear minimization on

Samsung Laptop

Fig. 21 Multibody dynamics on Raspberry

Pi Model 1 B+

Fig. 22 Multibody dynamics on Raspberry

Pi Model 2 B

Fig. 23 Multibody dynamics on

 Samsung Laptop

VI. DISCUSSIONS AND FUTURE WORKS

The multi-language support and cross-platform capabilities

are demonstrated by the real-world applications. Through using

the SNC, the users easily delegate the numerical intensive part

to the cloud services. The performance is greatly improved.

However, in the case of certain applications with small sized

computation tasks, the local computation may be faster than the

client-server communication in SNC. Under this circumstance,

performing local computation is a straightforward choice. To

resolve this issue, we designed a threshold option at the client

side. This option allows a user to decide the threshold value

based on a problem size. Only computation tasks that exceeded

the threshold can be submitted to the SNC cloud; otherwise, the

local computation will be conducted.

The portability of SNC is considered and enhanced in two

aspects: (1) the user client-cloud server separation and (2) the

task scheduler-processing element separation. The client-server

communication follows a stipulated transmission protocol. In

this, we implemented this protocol in Section IV. An alternative

choice for this implementation could be based on some open

source projects like Apache Thrift or Google Protocol Buffer

that support multi-language and multi-platform communication

in a client-server mode. The task scheduler-process element

communication follows the intermediate representation (IR)

such as LLVM IR and Java bytecode. Two backend systems are

provided: LLVM and JVM. For the LLVM system, the task

scheduler and process element are separated by LLVM IR. The

process elements are the main computation unit of the SNC. By

using the LLVM target-independent code generator, the LLVM

IR is translated to the machine code for a specified target (e.g.

CPU or GPU) in a binary machine code. For the JVM system,

JVM is well known as ‘write-once run-anywhere’. Together,

the portability of the SNC architecture on heterogeneous cloud

is enhanced by the portability of the backend systems and the

client-server design.

In the future, the SNC platform should be further extended

by adding a cloud security solution, being adapted for certain

domain-specific application frameworks and supporting the

large scale matrix-based operations. These works could extend

the usability of the SNC cloud service platform in the real word.

VII. CONCLUSIONS

In this paper, we presented a cloud service platform for

symbolic-numeric computation, the SNC platform. The SNC

supported popular computer languages, such as C/C++, Python,

Java, for the symbolic-numeric computation with Just-In-Time

(JIT) compilation. The platform also integrated cloud services

through the designed modules and communication protocols.

Thus, the SNC supports a wide range of languages and has the

cross-platform interoperability so it is superior to other existing

platforms such as Wolfram Cloud and SageMath.

By experimenting a number of user applications on popular

cloud providers (such as Google Compute Engine, Amazon

EC2, Microsoft Azure, Rackspace, HP Helion and VMWare

vCloud), we demonstrated that (a) the SNC platform speeds up

the symbolic-numeric computation significantly (2~16 times

faster compared with these local computations); and (b) this

cloud-based service platform enables lightweight devices or

mobile devices to perform numerical intensive computations.

In the implementation, the SNC provided the intuitive user

interfaces and syntax, and supported the symbolic expression in

a human-readable format. This minimized the syntax difference

among different computer program languages. This effort helps

to lower the difficulty of learning the platform to program.

As Cloud computing is raising increasing attention, the SNC

platform, as the first enabler, will help the research community

to smoothly adopt the cloud computing technique. This offered

a way to stimulate the need for using the cloud computing for

the symbolic-numeric computation in the field of scientific

research.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, "A

break in the clouds: towards a cloud definition," SIGCOMM

Comput. Commun. Rev., vol. 39, pp. 50-55, 2008.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.

Konwinski, et al., "A View of Cloud Computing," Communications

of the ACM, vol. 53, pp. 50-58, Apr 2010.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 12

[3] P. Mell and T. Grance, "The NIST Definition of Cloud Computing,"

Communications of the ACM, vol. 53, pp. 50-50, Jun 2010.
[4] S. Hazelhurst, "Scientific computing using virtual

high-performance computing: a case study using the Amazon elastic

computing cloud," in Proceedings of the 2008 annual research
conference of the South African Institute of Computer Scientists and

Information Technologists on IT research in developing countries:

riding the wave of technology, 2008, pp. 94-103.
[5] L. Z. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and

W. Karl, "Scientific Cloud Computing: Early Definition and

Experience," Hpcc 2008: 10th Ieee International Conference on
High Performance Computing and Communications, Proceedings,

pp. 825-830, 2008.

[6] C. Evangelinos and C. Hill, "Cloud computing for parallel scientific
HPC applications: Feasibility of running coupled atmosphere-ocean

climate models on Amazon’s EC2," ratio, vol. 2, pp. 2-34, 2008.

[7] C. Vecchiola, S. Pandey, and R. Buyya, "High-Performance Cloud
Computing: A View of Scientific Applications," 2009 10th

International Symposium on Pervasive Systems, Algorithms, and

Networks (Ispan 2009), pp. 4-16, 2009.
[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,

"Cloud computing and emerging IT platforms: Vision, hype, and

reality for delivering computing as the 5th utility," Future
Generation Computer Systems, vol. 25, pp. 599-616, Jun 2009.

[9] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and

D. Epema, "A Performance Analysis of EC2 Cloud Computing
Services for Scientific Computing," Cloud Computing, vol. 34, pp.

115-131, 2010.
[10] J. J. Rehr, F. D. Vila, J. P. Gardner, L. Svec, and M. Prange,

"Scientific computing in the cloud," Computing in Science &

Engineering, vol. 12, pp. 34-43, 2010.
[11] S. Srirama, O. Batrashev, and E. Vainikko, "SciCloud: scientific

computing on the cloud," in Proceedings of the 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, 2010, pp. 579-580.

[12] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,

and D. H. Epema, "Performance analysis of cloud computing
services for many-tasks scientific computing," Parallel and

Distributed Systems, IEEE Transactions on, vol. 22, pp. 931-945,

2011.
[13] Y. Deng, P. Zhang, C. Marques, R. Powell, and L. Zhang, "Analysis

of Linpack and power efficiencies of the world’s TOP500

supercomputers," Parallel Computing, vol. 39, pp. 271-279, 2013.
[14] C. Moler and P. J. Costa, "MATLAB Symbolic Math Toolbox,"

User’s Guide, Version, vol. 2, pp. 01760-1500, 1997.

[15] K. O. Geddes and G. J. Fee, "Hybrid symbolic-numeric integration
in MAPLE," in Papers from the international symposium on

Symbolic and algebraic computation, 1992, pp. 36-41.

[16] S. Wolfram, "The Mathematica Book," Cambridge University Press
and Wolfram Research, Inc., New York, NY, USA and, vol. 100, pp.

61820-7237, 2000.

[17] M. K. J Su, Y Liu, Z Lin, N Pantong, H Liu, "Optical imaging of
phantoms from real data by an approximately globally convergent

inverse algorithm," Inverse problems in science and engineering,

vol. 21, p. 26, 2013.
[18] N. P. A Rhoden, Y Liu, J Su, H Liu, "A globally convergent

numerical method for coefficient inverse problems with

time-dependent data," Applied Inverse Problems, p. 24, 2013.
[19] J. S. Y Liu, ZJ Lin, S Teng, A Rhoden, N Pantong, H Liu,

"Reconstructions for continuous-wave diffuse optical tomography

by a globally convergent method," Journal of Applied Mathematics
and Physics, vol. 2, p. 10, 2014.

[20] D. A. H. Patrick E. Farrell, Simon W. Funke and Marie E. Rognes,

"Automated derivation of the adjoint of high-level transient finite
element programs," SIAM Journal on Scientific Computing, vol. 35,

p. 25, 2013.

[21] J. McCarthy, "Recursive functions of symbolic expressions and
their computation by machine, Part I," Communications of the

ACM, vol. 3, pp. 184-195, 1960.

[22] Y. Liu, P. Zhang, and M. Qiu, "Fast Numerical Evaluation for
Symbolic Expressions in Java," in 2015 IEEE 17th International

Conference on High Performance Computing and

Communications, 2015 IEEE 7th International Symposium on

Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems, 2015, pp. 599-604.

[23] J. Grabmeier, E. Kaltofen, and V. Weispfenning, Computer Algebra

Handbook: Foundations, Applications, Systems vol. 1: Springer
Science & Business Media, 2003.

[24] D. Wang and L.-H. Zhi, Symbolic-Numeric Computation: Springer

Science & Business Media, 2007.
[25] U. Langer and P. Paule, Numerical and Symbolic Scientific

Computing: Progress and Prospects: Springer Science & Business

Media, 2011.
[26] G. Amberg, R. Tonhardt, and C. Winkler, "Finite element

simulations using symbolic computing," Mathematics and

Computers in Simulation, vol. 49, pp. 257-274, Sep 1999.
[27] J. McPhee, C. Schmitke, and S. Redmond, "Dynamic modelling of

mechatronic multibody systems with symbolic computing and

linear graph theory," Mathematical and Computer Modelling of
Dynamical Systems, vol. 10, pp. 1-23, Mar 2004.

[28] A. Krowiak, "Symbolic computing in spline‐based differential

quadrature method," Communications in Numerical Methods in

Engineering, vol. 22, pp. 1097-1107, 2006.

[29] B. Harvey, Computer science logo style: Symbolic computing vol. 1:
MIT press, 1997.

[30] D. Joyner, O. Certik, A. Meurer, and B. E. Granger, "Open source

computer algebra systems: SymPy," ACM Commun. Comput.
Algebra, vol. 45, pp. 225-234, 2012.

[31] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G.

Desjardins, et al., "Theano: a CPU and GPU math expression
compiler," in Proceedings of the Python for scientific computing

conference (SciPy), 2010, p. 3.

[32] W. Stein, "Sage: Open Source Mathematical Software," ed: The
Sage Group, 2008.

[33] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T.

Suganuma, et al., "Design, implementation, and evaluation of
optimizations in a Java (TM) Just-in-Time compiler,"

Concurrency-Practice and Experience, vol. 12, pp. 457-475, May

2000.
[34] C. Lattner and V. Adve, "LLVM: A compilation framework for

lifelong program analysis & transformation," in Code Generation

and Optimization, 2004. CGO 2004. International Symposium on,
2004, pp. 75-86.

[35] P. Bonzini and L. Michel, "GNU Lightning library," ed, 2004.

[36] G. Barany, "pylibjit: A JIT Compiler Library for Python," in
Software Engineering (Workshops), 2014, pp. 213-224.

[37] J. Gosling, "Java Intermediate Bytecodes - Acm Sigplan Workshop

on Intermediate Representations (Ir 95)," Sigplan Notices, vol. 30,
pp. 111-118, Mar 1995.

[38] Wolfram Cloud. Available: https://www.wolframcloud.com/
[39] SageMath Cloud. Available: https://cloud.sagemath.com/

[40] C. Bauer, A. Frink, and R. Kreckel, "Introduction to the GiNaC

framework for symbolic computation within the C++ programming
language," Journal of Symbolic Computation, vol. 33, pp. 1-12, Jan

2002.

[41] Y. Liu, P. Zhang, and M. Qiu, "Fast Numerical Evaluation for
Symbolic Expressions in Java," presented at the 17th IEEE

International Conference on High Performance and

Communications (HPCC 2015), 2015.

[42] O. Certik, "SymPy Python library for symbolic mathematics,"

Technical report (since 2006), http://code.google.com/p/sympy/

(accessed November 2009).
[43] llvmpy. Available: https://github.com/llvmpy

[44] G. Gede, D. L. Peterson, A. S. Nanjangud, J. K. Moore, and M.

Hubbard, "Constrained multibody dynamics with Python: From
symbolic equation generation to publication," in ASME 2013

International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference, 2013, pp.
V07BT10A051-V07BT10A051.

https://www.wolframcloud.com/
https://cloud.sagemath.com/
http://code.google.com/p/sympy/
https://github.com/llvmpy

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING 13

Peng Zhang received the BS degree
in mathematics from Nankai
University in 2003 and the MS
degree in parallel computing from
Nankai Institute of Scientific
Computing in 2006, and the PhD
degree in applied mathematics from
Stony Brook University, New York,
USA in 2012. Currently, he is a
Senior Research Associate at Stony
Brook University, NY, USA. Dr.

Zhang’s research interests include development and
enhancement of models, algorithms, software and
problem-solving environments for domain-specific
applications that reply on the high-performance computing
(HPC) technologies. His work has appeared in over 50
publications and presentations. He is the member of IEEE.

Yueming Liu received his B.S.

degree in information and

computing science and Ph.D

degree in computational

mathematics from Nankai

University. He was a senior

software engineer at Qunar.com.

He worked as a faculty research

associate at the university of Texas

at Arlington. He worked at

Spokeo.com as a software engineer and now is a senior

software engineer in OpenX technologies, Inc. His main

academic and industry interests are in Finite Element

methods, PDE inverse problems, high performance

computing and bytecode/bitcode oriented software

development paradigm with Just-in-Time compilation.

Meikang Qiu received the BE and
ME degrees from Shanghai Jiao
Tong University and received
Ph.D. degree of Computer
Science from University of Texas
at Dallas. Currently, he is an
Adjunct Professor at Columbia
University and Associate
Professor of Computer Science at
Pace University. He is an IEEE
Senior member and ACM Senior
member. He is the Chair of IEEE

Smart Computing Technical Committee. His research
interests include cyber security, cloud computing, big data
storage, hybrid memory, heterogeneous systems,
embedded systems, operating systems, optimization,
intelligent systems, sensor networks, etc.

