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ABSTRACT Cloud computing is a promising IT technique that can organize a large amount of IT 

resources in an efficient and flexible manner. Increasingly numerous companies plan to move their local 

data management systems to the cloud and store and manage their product information on cloud servers. An 

accompanying challenge is how to protect the security of the commercially confidential data while 

maintaining the ability to search the data. In this paper, a privacy-preserving data search scheme is 

proposed that can support both the identifier-based and feature-based product searches. Specifically, two 

novel index trees are constructed and encrypted that can be searched without knowing the plaintext data. 

Analysis and simulation results demonstrate the security and efficiency of our scheme. 

INDEX TERMS product information retrieval; cloud computing; information security 

I. INTRODUCTION 

Driven by the revolution of information technology in 

recent years and with the slowdown in the economic growth, 

there is an urgent need to transform China’s entire 

industrial chain. To promote an all-around industrial 

upgrading, China has proposed the strategy of "Internet +", 

and the integration of China’s ecommerce with its 

traditional economy has been significantly improved. 

Ecommerce has accelerated its expansion from 

consumption to various industries and infiltrated all aspects 

of social and economic activities, thereby driving the 

development of enterprise-level ecommerce, both in scope 

and in depth, and facilitating the transformation and 

upgrading of enterprises. The Monitoring Report on the 

Data of China's Ecommerce Market [1] shows that in 2016, 

the volume of ecommerce transactions in China reached 

approximately 3.5 trillion dollars, a year-on-year growth 

rate of approximately 25.5%. 

The rapidly rising number of cyber-transactions have 

spawned ecommerce big data. As increasingly numerous 

data files are being stored locally in enterprises, the 

pressure on local data storage systems greatly increases. 

Local hardware failures lead to great damage or loss of data, 

which greatly affects the daily operations of the enterprises. 

Fortunately, cloud storage techniques came into being 

under such circumstances. Cloud computing can collect and 

organize a large number of different types of storage 

devices by means of various functions, such as cluster 

applications, network technology and distributed file 

systems. There have already been a number of typical cloud 

service products at home and abroad, such as Amazon Web 

Services [2], Microsoft Azure [3], i Cloud [4], and App 

Engine [5]. 
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As large amounts of data are outsourced to cloud storage 

servers, the need for data owners to encrypt the 

abovementioned second and third types of sensitive data 

makes traditional plain text-based data search solutions no 

longer suitable. In addition, restricted by the network 

bandwidth and local storage capacity constraints, users find 

it impossible to re-download all the data to a local disk and 

later decrypt them for use. Based on the above issues, 

privacy-preserving data search schemes were born, 

designed to ensure that only legitimate users based on 

identifiers or keywords, and have the ability to search the 

data. These schemes safeguard the users’ personal data but 

enable the server to  return to the target ciphertext file 

according to the query request. Thus, we can ensure the 

security of user data and privacy while not unduly reducing 

the query efficiency. 

In this paper, we focus on the second and third types of 

data and design a secure and efficient data search scheme. 

For convenience, a practical background is presented as 

follows. We first assume that each product has a unique 

identifier in the whole company and a detailed description 

file. The file includes all of the detailed information of the 

product, such as the design flow, design standard, product 

features and market position. As we all know, launching the 

product to the market earlier than the competitor can 

occupy the market quickly and benefit the company 

considerably. As a consequence, all of the information 

should be kept from the competitors and the public, 

considering that the products are time-sensitive. 

With the growth of the company, product information 

also increases greatly. To improve the stability and 

reliability of a data storage system, an intuitive scheme is 

moving the local data management system to the cloud. 

Cloud computing is widely treated as a promising 

information technique (IT) infrastructure because of its 

powerful functionalities. It can collect and reorganize huge 

resources of storage, computing and applications, which 

means that the users can access the IT services in a flexible, 

ubiquitous, economic and on-demand manner [10]. An 

accompanying challenge is how to protect the 

confidentiality of the data while maintaining its  

searchability In this paper, we design an encrypted product 

information retrieval system. This system includes two 

index structures: a hash value index tree, known as an ID-

AVL tree, and a height-balanced index tree, known as a 

product retrieval feature (PRF) tree. Based on the two index 

trees, two data search methods are supported, i.e., the data 

users can search the desired product by the identifier or 

feature vector. The elements in the ID-AVL tree are the 

hash values of the product identifiers, rather than the 

plaintext data, and the tree thus can be directly outsourced 

to the cloud. Meanwhile, the elements in the PRF tree are 

plaintext data, and they are encrypted by the secure kNN 

algorithm before being outsourced. In addition, a detailed 

depth-first product search algorithm is designed for the PRF 

tree. Simulation results show the effectiveness and 

efficiency of the proposed scheme. 

We summarize the primary contributions of this paper as 

follows: 

 A product information outsourcing and searching 

system model including the data owner, cloud server 

and data users is designed. 

 Two index structures supporting efficient product 

retrieval are constructed. Moreover, corresponding 

search algorithms are also proposed. 

 We integrate the secure kNN algorithm into our 

scheme to guarantee the security of the outsourced 

data while maintaining the its searchability. 

 A series of simulations are conducted to illustrate the 

security and efficiency of the proposed scheme. 

The rest of this paper is organized as follows. We first 

summarize the related work of privacy-preserving data 

search schemes in Section 2. Next, the data search system 

model and preliminary techniques are discussed in Section 3. 
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Section 4 presents the encrypted product information 

retrieval scheme in detail, and the evaluation of the proposed 

scheme is provided in Section 5. Finally, the study’s 

conclusions are presented in Section 6. 

II.  RELATED WORK 

Cloud storage services have several advantages, such as ease 

of use and cost saving, and they are widely used in many 

fields. However, several challenges are associated with them. 

With the increasing popularity of cloud storage, security 

issues have become an important factor restricting its 

development. In recent years, data leakage accidents have 

repeatedly occurred in such companies as Microsoft, Google, 

Amazon, and China’s Home Inn, Hanting, and Ctrip, and 

these incidents have exacerbated users’ worries. 

To counter the information leakage, data owners and 

enterprises typically outsource the encrypted business data, 

rather than the plaintext data, to cloud storage servers. In 

general, the outsourced data can be divided into three types. 

The first type is the open-resource-type data, which do not 

need to be hidden from the cloud server, such as the basic 

information of the enterprise and the parameters of products. 

The second type is the private data, which need to be 

encrypted but are only accessed and decrypted by the data 

contributor [6], [7]. This type includes such data as internal 

confidential information, intellectual properties and patents. 

The third type is the private data that need to be encrypted 

but can also be shared with specific users or groups [8], [9]. 

This type includes internal shared data, hospital’s division-

wide case information and information by some shared 

advanced users. 

A single keyword Boolean search [11], [12], [13], [14], 

[15], [16], [17] is the simplest document retrieval method for 

encrypted files. Song et al. [11] first proposed the searchable 

encryption scheme in which each word in a document is 

encrypted independently, and the users need to scan the 

entire document to search for a certain keyword. 

Consequently, this method has an extremely high searching 

complexity. Next, Goh [12] formally built the security 

definitions for symmetric searchable encryption, and a 

scheme based on a Bloom filter was designed. The security 

definitions are extended in [13], [18]. Due to the lack of a 

rank mechanism for the returned results, the data users need 

to take a long time to screen the returned results, which is 

unacceptable in general. Thus, many single keyword-ranked 

search schemes have been proposed [14], [15], [16], [19], 

[20]. Though these schemes can return more accurate search 

results, they cannot satisfy users’ requirements in most cases, 

considering that a single word cannot provide sufficient 

information to describe the users’ interests. 

Multiple keyword Boolean search schemes allow the data 

users to input a set of keywords to search the desired 

documents. Conjunctive keyword search schemes [21], [22], 

[23] return the documents in which all the keywords 

specified by the search query appear; disjunctive keyword 

search schemes return all the documents that contains at least 

one keyword of interest. Predict keyword search schemes 

[24], [25], [26] have been proposed to support both 

conjunctive and disjunctive search patterns. However, the 

returned results are still not sufficiently suitable to the users 

because the degrees of importance of the keywords are not 

considered in these schemes. 

In [27], Cao et al. first proposed a basic privacy-preserving 

multi-keyword ranked search scheme based on a secure kNN 

algorithm [28]. A set of strict privacy requirements are 

established, and two schemes are later proposed to improve 

the security and search experience. However, an apparent 

drawback of this scheme is that the search efficiency is linear 

with the cardinality of the document collection, and 

consequently, it cannot be used to process extremely large 

document databases. Xia et al. [29] designed a keyword 

balanced binary tree to organize the document vectors and 

proposed a “Greedy Depth-First Search” algorithm to 

improve the search efficiency. Moreover, the index tree can 
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be updated dynamically with an acceptable communication 

burden. Chen et al. [30] took the relationships of documents 

into consideration, and a hierarchical-clustering-based index 

structure was designed to improve the search efficiency. In 

addition, a verification scheme was also integrated into their 

scheme to guarantee the correctness of the results. However, 

these two index trees in [29] and [30] can be further 

improved in terms of efficiency and accuracy as discussed in 

Section 1. Fu et al. [31] presented a personalized multi-

keyword ranked search scheme in which an interest model of 

the users is integrated into the document retrieval system to 

support a personalized search and improve the users’ search 

experience. Specifically, the interest model of a data user is 

built based on his search history with the help of WordNet 

[32] in order to depict his behaviors in fine grit level. 

However, this scheme does not support dynamic update 

operations because the document vectors are constructed 

based on all the documents. In addition, though an MDB-tree 

is employed to improve the search efficiency, the 

effectiveness of the tree is difficult to predict. Several other 

related studies in the field of cloud computing can be found 

in [35], [36], [37], [38], [39]. 

III.    SYSTEM MODEL AND THE INDEX TREES 

3.1.     Product Retrieval System 

As shown in Fig. 1, the entire product retrieval system model 

is composed primarily of three entities: the data manager, the 

cloud server and the data user. The primary responsibilities 

of these three entities are presented in the following. 

The data manager is responsible for managing the product 

and collecting the product information. In addition, the data 

manager needs to encrypt the product information file by a 

symmetric encryption technique before outsourcing the data 

to the cloud server. To improve the security of the files, each 

file is encrypted by a single secret key, and the keys of 

different files are independent. Furthermore, to improve the 

search efficiency, an index structure is constructed for the 

outsourced data. At first, an identifier index structure is 

constructed based on the hash function and height-balanced 

binary search tree. Then, a feature vector tree is built for all 

the feature vectors of the product, and it is encrypted by the 

secure kNN algorithm. 

When a data user wants to search a set of chosen products, 

she needs to generate a trapdoor to describe her interest. Two 

types of the trapdoor can be provided, i.e., a set of hash 

values of the desired product information files or a set of 

feature vectors. For the first type of trapdoor, a set of 

encrypted files with the same hash identifiers are returned, 

and for the second type trapdoor, the most relevant encrypted 

files are returned. The data user can obtain the plaintext files 

by decrypting the returned files with the help of the 

symmetric secret keys. These secret keys are provided by the 

data manager. 

The cloud server stores all the data uploaded by the data 

manager. When a data user needs to search the data in the 

cloud, she first generates a trapdoor, which is sent to the 

cloud server. A search engineer is employed by the cloud 

server to act as a bridge between the data users and the 

encrypted data. Though the cloud server cannot get the 

plaintexts of the data, it should be capable  of sending the 

Trap
door

Update

Cloud 

server

Data 
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Fig. 1. Encrypted product information retrieval system model 
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accurate search result of the trapdoor to the data users. Of 

course, the returned data are ciphertext, and the data user 

needs to decrypt them by the symmetric secret keys which 

are provided by the data manager. 

3.2. ID-AVL Tree 

To construct the ID-AVL tree, we first encrypt all the 

product identifiers based on a hash function, hash(). Next, 

each node in the ID-AVL tree contains a hash value of the 

product ID, and all of the hash values are organized based on 

an AVL tree [33] as shown in Fig. 2. Two important 

properties of AVL, which can help us to maintain the hash 

values, are presented as follows. First, the ID-AVL tree can 

be updated flexibly by inserting a node, deleting a node and 

modifying a node. Correspondingly, we can update the ID-

AVL tree from time to time by changing the product 

information. Second, the values of the left child nodes of a 

parent node are always smaller than that of the parent node; 

the values of the right child nodes of a parent node are 

always larger than that of the parent node. In theory, the time 

complexity of inserting, deleting and searching a node are all 

log(N), where N is the number of nodes in the tree. In this 

paper, we construct the ID-AVL tree based on the algorithm 

in [33]. 

3.3. Product Retrieval Tree 

The feature dictionary of the products is denoted as 

𝐷 = *𝑓 , 𝑓 , ⋯ , 𝑓 +, and the feature set 𝑆  of any product 𝑃  

must be a subset of 𝐷 , i.e., 𝑆 ∈ 2*  ,  ,⋯,  + . Then, the 

feature vector 𝑉  of product 𝑃  is constructed as follows. 

 The initial vector of 𝑃  is a 1 × 𝑚 vector, and all the 

elements in the vector are 0; 

 We orderly scan all the elements in the initial vector 

and assign a value to the element of feature f  if the 

feature of P  can be quantized. 

 Based on the different degrees of importance of the 

features, a weight is employed to multiply the 

elements in the vector to reflect this. 

To search the product information, a trapdoor needs to be 

constructed by the data user in a similar way, and the 

similarities between the trapdoor 𝑉  and the product feature 

𝑉  is calculated as sim(𝑉 , 𝑉 ) = 𝑉 ∙ 𝑉 . Moreover, the 

similarity between two the vectors 𝑉  and 𝑉  is defined as 

sim(𝑉 , 𝑉 ) = 𝑉 ∙ 𝑉 . Next, the product feature vectors are 

organized as hierarchical clusters according to their 

similarities. Each node in the tree represents a cluster 

composed of a set of product feature vectors or sub-

clusters. The PRF vector of a node is a quintuple 

summarization about a cluster. 

Given 𝐾  𝑚 -dimensional product feature vectors in a 

cluster: {𝑉 }  where 𝑗 = 1,2,⋯ , 𝐾 , the PRF vector of the 

cluster is denoted as a quintuple: 

𝑃𝑅𝐹 = (𝐾, 𝐿𝑆, 𝑆𝑆, 𝑉   , 𝑉   ) , where 𝐾  is the number of 

product feature vectors in the cluster, 𝐿𝑆 is the linear sum of 

the 𝐾 product feature vectors, i.e., 𝐿𝑆 = ∑ 𝑉 
 
   , 𝑆𝑆 is the 

square sum of the 𝐾  product feature vectors, i.e., 𝑆𝑆 =

∑ 𝑉 
  

    (𝑆𝑆 is a numerical value rather than a vector), 𝑉    

denotes a vector consisting of 𝑚  values which are 

calculated as follows: 

𝑉   ,𝑖- = 𝑚𝑖𝑛(𝑉 ,𝑖-, 𝑉 ,𝑖-,⋯ , 𝑉 ,𝑖-),         (1) 

where 𝑉 ,𝑖-  is the 𝑖 -th dimensional value of 𝑉 , and 

similarly, 𝑉    is calculated as follows: 

𝑉   ,𝑖- = 𝑚𝑎𝑥(𝑉 ,𝑖-, 𝑉 ,𝑖-,⋯ , 𝑉 ,𝑖-).            (2) 

4

2 6

1 3 5 7

 

Fig. 2. Product hash value index tree 
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Based on a PRF vector, the centroid of a cluster 𝐶 can be 

easily calculated as 

𝑐 = 𝐿𝑆 𝐾⁄ ,                               (3) 

and the relevance score between cluster 𝐶  and a product 

vector 𝑉  is defined as 

RScore(𝐶, 𝑉 ) = 𝑐 ∙ 𝑉 .                  (4) 

Similarly, the relevance score between cluster 𝐶  and a 

query vector 𝑉  is defined as 

RScore(𝐶, 𝑉 ) = 𝑐 ∙ 𝑉 .                (5) 

Further, the radius of cluster 𝐶 is defined as follows: 

𝑅 = √∑ (𝑉 − 𝑐)  
   𝐾⁄ ,                 (6) 

and it can be calculated by the PRF vector as follows: 

𝑅 = √(𝑆𝑆 − 𝐿𝑆 𝐾⁄ ) 𝐾⁄ .                 (7) 

Theorem 1. (PRF Additivity Theorem): If we merge two 

disjoint clusters with PRF vectors: 

𝑃𝑅𝐹 = (𝐾 , 𝐿𝑆 , 𝑆𝑆 , 𝑉    , 𝑉    )  and 𝑃𝑅𝐹 =

(𝐾 , 𝐿𝑆 , 𝑆𝑆 , 𝑉    , 𝑉    ) , then the PRF vector of the 

combined cluster is 

𝑃𝑅𝐹 = 𝑃𝑅𝐹 + 𝑃𝑅𝐹 = (𝐾 + 𝐾 , 𝐿𝑆 + 𝐿𝑆 , 𝑆𝑆 +

𝑆𝑆 , 𝑉   , 𝑉   ),                           (8) 

where 𝑉   ,𝑖- = 𝑚𝑖𝑛(𝑉    ,𝑖-, 𝑉    ,𝑖-)  and 𝑉   ,𝑖- =

𝑚𝑎𝑥(𝑉    ,𝑖-, 𝑉    ,𝑖-). 

Proof：The proof consists of straightforward algebra.□ 

In the similar way, we can obtain the PRF Subtraction 

Theorem, which can be used to divide two clusters, though 

𝑉    and 𝑉    need to be recalculated. The structure of a 

PRF tree is presented in Fig. 3. It can be observed that each 

leaf node is composed of a set of similar product vectors 

and its PRFvector is directly extracted from the product 

vectors. The similar leaf nodes agglomerate with each other 

to compose the non-leaf nodes until all the product vectors 

belong to a huge cluster at the a root node. Based on 

Theorem 1, the PRFvectors of the non-leaf nodes and the 

root node are calculated based on the PRF vectors of all 

their child nodes. 

IV. ENCRYPTED PRODUCT INFORMATION RETRIEVAL 

SCHEME 

4.1. Construction of Product Retrieval Tree 

A PRF tree has three main parameters: branching factors 

𝐵 , 𝑎𝑛𝑑𝐵  and threshold 𝑇, which are preset by the data 

owner. Each non-leaf node 𝑁𝐿  contains at most 𝐵  child 

nodes, and it is defined as follows: 

𝑁𝐿 = (𝑃𝑅𝐹, 𝑃𝑅𝐹 , 𝑐ℎ𝑖𝑙𝑑 , ⋯ , 𝑃𝑅𝐹  
, 𝑐ℎ𝑖𝑙𝑑  

)       (9) 

where 𝑃𝑅𝐹 is the PRF vector of the whole cluster, 𝑃𝑅𝐹  is 

the PRF vector of the 𝑖-th sub-cluster and 𝑐ℎ𝑖𝑙𝑑  is a pointer 

to the child node representing the sub-cluster. A non-leaf 

node represents a cluster made up of all the sub-clusters 

represented by its child nodes. A leaf node 𝐿  contains at 

most 𝐵  product vectors, and it is defined as follows: 

𝐿 = (𝑃𝑅𝐹, 𝑐ℎ𝑖𝑙𝑑 , ⋯ , 𝑐ℎ𝑖𝑙𝑑  
),               (10) 

where 𝑃𝑅𝐹  is the PRF vector of the cluster, 𝑐ℎ𝑖𝑙𝑑  is a 

pointer to the 𝑖 -th product vector in the cluster. 

Furthermore, the cluster of a leaf node must satisfy a 

threshold requirement: the radius of the cluster (11) must be 

less than 𝑇. The default values in the nodes are set to 𝑛𝑢𝑙𝑙. 

The PRF tree is constructed in an incremental manner, 

and the process of inserting a product vector 𝑉  into the 

PRF tree is presented as follows: 

 Identifying the appropriate leaf node: Starting from 

the root, 𝑉  recursively descends the PRF tree by 

choosing the closest child node according to the 

relevance scores between 𝑉  and the sub-clusters as 

... ... ...

...

...

Minor-
cluster

Product 
vectors

Macro-
cluster

Root node Root

PRF PRF

PRFPRFPRF

 

Fig. 3. Product retrieval feature tree 
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defined in (11) until it reaches a leaf node. 

 Modifying the leaf node: When V  reaches a leaf 

node L , it tests whether L  can “absorb” V  without 

violating the constraints of B  and T . If so, V  is 

inserted into L  and the PRF vector of L  is updated. 

If not, we must split L  to two leaf nodes. Node 

splitting is performed by choosing the farthest pair 

of product vectors as seeds and redistributing the 

remaining product vectors based on the closest 

criteria. The PRF vectors of the two new leaf nodes 

need to be recalculated. 

 Modifying the path from the root node to the leaf 

node: After inserting V  into a leaf node, we need to 

update the PRF vector for all the nodes on the path 

to the leaf node. In the absence of a split, this 

simply involves updating PRF vectors based on 

Theorem 1. A leaf node split requires us to insert a 

new leaf node into the parent node. If the parent 

node has space for the new leaf node, we only need 

to insert the new leaf node into it and then update 

the PRF vector for the parent node. In general, 

however, we may have to split the parent node as 

well, and so on, up to the root. If the root is split, 

the tree height increases by one. 

4.2. Retrieval Process of the Interested Products 

In this paper, the data users can retrieve the interested 

product in two ways, i.e., retrieving the products by their 

identifiers or the product feature vector. When a data user 

wants to search a product based on its identifier, she first 

needs to encrypt the identifier based the on the hash 

function, hash(). Next, the hash value of the identifier is 

sent to the cloud server. The cloud server is responsible for 

searching for the hash value in the ID-AVL tree, and once 

the hash value is found, the corresponding encrypted 

production information is sent to the data user. Finally, the 

data user can decrypt the product information based on the 

secret keys, and the data retrieval process is completed. 

Moreover, in certain cases, the data user may want to 

search the product based on the features. Initially, the data 

user needs to construct the feature vector of the product as 

discussed in Section 3.3. Then, we need to design a depth-

first search algorithm for the PRF tree, and that algorithm is 

presented in Algorithm 1. 

In Algorithm 1, the 𝑘thScore  represents the smallest 

relevance score in the current result list 𝑅𝐿𝑖𝑠𝑡, which stores 

the most 𝑘 relevant accessed document vectors with 𝑉  and 

the corresponding relevance scores. In addition, we employ 

the variable 𝑆𝑡𝑎𝑐𝑘  to store the nodes which need to be 

Algorithm 1:                 (aPR treewithroot , 𝑎 uer vector𝑉 ) 

1: 𝑢   ; 

2: while 𝑢 is not a leaf node 

3:    Calculate all the relevance scores between the child nodes of 𝑢 

with 𝑉 based on (5); 

4:    𝑢   the most relevant child node;  

5: end while 

6: Select the most relevant 𝑘  document vectors in 𝑢  by RScore(𝑉 , 𝑉 ) and 

construct 𝑅𝐿𝑖𝑠𝑡; 

7: 𝑆𝑡𝑎𝑐𝑘  ush( ); 

8: while 𝑆𝑡𝑎𝑐𝑘 is not empty 

9:    𝑢  𝑆𝑡𝑎𝑐𝑘  o (); 

10:    if the node 𝑢 is not a leaf node 

11:      if RScore(𝑉 ,   , 𝑉 )  𝑘thScore 

12:        Sort the child nodes of 𝑢 in ascending order based on the relevant  

scores with 𝑉 ; 

13:        Push the children of 𝑢 into 𝑆𝑡𝑎𝑐𝑘 in order, i.e., the most relevant  

child is latest inserted into 𝑆𝑡𝑎𝑐𝑘; 

14:      else 

15:        break; 

16:      end if 

17:    else 

18:      Calculate the relevance scores between the document vectors in the  

leaf node with 𝑉  and update 𝑅𝐿𝑖𝑠𝑡; 

19:    end if 

20: end while 

21: return 𝑅𝐿𝑖𝑠𝑡; 

 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

 

VOLUME XX, 2017 9 

searched in the future. In addition, 𝑆𝑡𝑎𝑐𝑘  ush(𝑢) inserts 

node 𝑢  into 𝑆𝑡𝑎𝑐𝑘  and 𝑆𝑡𝑎𝑐𝑘  o ()  returns the latest 

inserted node. 

4.3. Encryption of the Product Retrieval Tree 

For each product 𝑃 , two types of information are first 

extracted, including its identifier 𝑖 and the product vector 

𝑉 . We encrypt the identifier 𝑖  through a hash function, 

hash(). The construction process of the 𝐼𝐷 − 𝐴𝑉𝐿 tree is 

presented as follows. The constructed 𝐼𝐷 − 𝐴𝑉𝐿 tree can be 

directly outsourced to the cloud server because it stores 

only a set of hash values, rather than the plaintext identifier. 

Based on the product vectors, the process of building the 

PRF tree has been presented in Section 4.2. In contrast to 

the 𝐼𝐷 − 𝐴𝑉𝐿, the PRF tree needs to be encrypted before 

being outsourced. In the PRF tree, we treat 𝐿𝑆, 𝑉    and 

𝑉    to the same as product vectors and encrypt them in the 

same way. Note that parameter 𝐾 in a PRF vector does not 

need to be encrypted, and 𝑆𝑆, which will not be used in the 

search process, does not need to be sent to the cloud server. 

Before encrypting a product vector 𝑉  in the PRF tree, we 

first extend it to (𝑚 + 𝑚 ) dimensions. In addition, we spilt 

each dimension of 𝑉 ,𝑖- into 𝑉 ,𝑖-
  and 𝑉 ,𝑖-

  . Specifically, 

if 𝑆  = 0 , 𝑉 ,𝑖-
  and 𝑉 ,𝑖-

   will be set equal to V ,i- ; 

otherwise, V ,i-
  and V ,i-

   will be set as two random 

numbers whose sum is equal to V ,i-. Next, we randomly 

select two invertible matrices M , M  and encrypt 𝑉  as 

𝐸 = *𝑀 
 𝑉 

 
, 𝑀 

 𝑉 
  
+. 

Once a search request 𝒮ℛ is received by the proxy server, 

it first extracts its parameters including 𝐼𝐷  and 𝑣𝒮ℛ . 

Parameter 𝐼𝐷  is encrypted by hash() and we get ℎ   . We 

extend 𝑣𝒮ℛ  to (𝑚 + 𝑚 )  dimensions. Specifically, if 

𝑆  = 0, the 𝑖-th dimension of 𝑉  corresponds to a feature 

𝑤 , which is extracted from 𝒲 in order, and 𝑉 ,𝑖- is set to 

𝑤  
; otherwise, this dimension is an artificial dimension 

and 𝑉 ,𝑖- is set to a random number. Note that the value of 

the last artificial dimension is not a random number, and it 

should be calculated carefully to guarantee that the dot 

product of the artificially added dimensions in the product 

vectors and in 𝑉  is 0. Further, we spilt 𝑉 ,𝑖- into 𝑉 ,𝑖-
  and 

𝑉 ,𝑖-
  . Specifically, if 𝑆  = 1, 𝑉 ,𝑖-

  and 𝑉 ,𝑖-
   will be set 

equal to 𝑉 ,𝑖-; otherwise, 𝑉 ,𝑖-
  and 𝑉 ,𝑖-

   will be set as 

two random numbers whose sum is equal to 𝑉 ,𝑖-. Finally, 

we encrypt 𝑉  as 𝐸 = *𝑀 
  𝑉 

 , 𝑀 
  𝑉 

  +. In this case, 

the relevance score of 𝑉  and 𝑉  defined in Section 3.2 can 

be calculated as follows: 

RScore(𝑉 , 𝑉 ) = 𝑉 ∙ 𝑉 = 𝐸 ∙ 𝐸 .             (11) 

The trapdoor 𝒯𝒟 is composed of the hash values of the 

filename and authors and 𝐸 . 

V. PERFORMANCE EVALUATION 

5.1. Security Analysis 

In our scheme, the outsourced data includes the product 

information file, ID-AVL tree and PRF tree. The product 

information files are encrypted symmetrically based on the 

independent secret keys, and the cloud server does not have 

the secret keys. In this case, the plaintext files cannot be 

decrypted by the cloud server. In the ID-AVL tree, the 

stored values are the hash values of the product identifiers, 

and they contain no valuable information about products. 

The PRF tree is encrypted by the secure kNN algorithm 

before being outsourced to the cloud server. Though the 

cloud server knows the encrypted feature vectors in the 

tree, the cloud server does not know the matrices M , M ; 

hence, the plaintext vectors in the tree cannot be recovered. 

5.2. Product Information Search Efficiency 

In this section, we evaluate the search efficiency of our 

scheme. First, we evaluate the construction time of the 

index structures of the product information. Specifically, we 

compare our scheme with the MRSE scheme [27]. To 

decrease the bias of the data manager who is responsible for 

generating the vectors and the hash values, in this paper we 

employ the Enron Email Data Set [34] to test our scheme. 
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Specifically, the data set is employed to act as the product 

information files. Moreover, the vectors of the product are 

assumed to be extracted from the data set based on the TF-IDF 

model, and then the vectors are organized by the PRF tree. 

As shown in Fig. 4, with the increasing number of 

products, the construction time of PRF tree and the index 

structures in MRSE monotonously increase. This is 

reasonable considering that each product information file 

needs to be scanned for a time to get the feature vectors. 

The construction time of the PRF tree is slightly longer than 

that of the MRSE scheme, because the vectors need to be 

further inserted to the trees in the PRF tree. Apparently, the 

ID-AVL tree is considerably simpler, and the construction 

time can be ignored compared with the other two trees. 

To search the desired product information, the data user 

needs to first generate the trapdoor, which is sent to the 

cloud server. The times of constructing the trapdoors with 

the increasing of the size of the feature dictionary are 

presented in Fig. 5. The search requests based on the 

identifiers are independent of the feature dictionary, and 

hence, the time of constructing the trapdoors for the ID-

AVL tree remains stable. However, the construction time of 

the trapdoors for the MRSE and PRF trees monotonously 

increase with the increasing of the feature dictionary’s size. 

This is reasonable considering that the size of the product 

feature vector is equal to the size of the feature dictionary. 

In addition, the time costs for the MRSE and PRF trees are 

similar to each other because the processes of generating 

the trapdoors are similar. 

The search time of a trapdoor in the cloud server is 

presented in Fig. 6. It can be observed that the MRSE 

scheme consumes the most time to execute a search 

operation. Moreover, the search time increases 

monotonously with the increasing of the number of 

products. This increase can be explained by the fact that in 

MRSE, the feature vectors are stored in order, and they do 

not employ any index structure. In this case, the cloud 

server needs to scan all the product feature vectors to get 

the search result. The PRF tree organizes the vectors by a 

height-balanced tree, and most paths in the tree are pruned 

in the search process. As a consequence, the search 

efficiency is greatly improved. Finally, we can observe that 

the ID-AVL tree is the most efficient index structure, which 

can be explained by the fact that the ID-AVL tree is 

 

Fig. 5. Time of constructing the trapdoors 

 

Fig. 4. Construction time of the index structures 
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considerably simpler, and the search process is also very 

easy. 

With the expanding growth of companies, more and more 

product information needs to be outsourced to the cloud 

server. Consequently, we need to update the index trees 

from time to time, and the update efficiency also affects the 

performance of our scheme significantly. As shown in Fig. 

7, the update time of both the PRF tree and the ID-AVL tree 

increases slightly with the increasing number of products, 

which is reasonable, considering that we need to search the 

trees to identify the proper location of the inserted node. In 

addition, updating the PRF tree consumes much more 

energy than that of updating the ID-AVL tree. This can be 

explained by the fact that the ID-AVL tree is much simpler 

than the PRF tree, and in theory only log(𝑁) nodes need to 

be searched. Though quite many paths in the PRF tree are 

pruned in the search process, the number of the search paths 

is considerably larger than log(𝑁) and more time is thus 

consumed in the PRF tree. 

VI. CONCLUSIONS 

In this paper, we designed a secure and efficient product 

information retrieval scheme based on cloud computing. 

Specifically, two index structures, including a hash value 

AVL tree and a product vector retrieval tree, are 

constructed, and they support an identifier-based product 

search and feature-vector-based product search, 

respectively. Correspondingly, two search algorithms are 

designed to search the two trees. To protect the product 

information privacy, all the outsourced data are encrypted. 

The product information is symmetrically encrypted based 

on a set of independent secret keys, and the product vectors 

are encrypted based on the secure kNN algorithm. Security 

analysis and simulation results illustrate the security and 

efficiency of the proposed scheme. 
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