
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 1

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Secure and Efficient Product Information
Retrieval in Cloud Computing

Ying-Si ZHAO1, Qing-An Zeng2

1School of Economics and Management, Beijing Jiaotong University, Beijing 100044 China
2Department of Computer Systems Technology, North Carolina A&T State University, North Carolina A&T State University
1
8769@bjtu.edu.cn

2 qzeng@ncat.edu

Corresponding author: Yingsi Zhao (e-mail: 8769@bjtu.edu.cn).

This work was supported by the Fundamental Funds of Beijing Jiaotong University under Grant B15JB00220.

ABSTRACT Cloud computing is a promising IT technique that can organize a large amount of IT

resources in an efficient and flexible manner. Increasingly numerous companies plan to move their local

data management systems to the cloud and store and manage their product information on cloud servers. An

accompanying challenge is how to protect the security of the commercially confidential data while

maintaining the ability to search the data. In this paper, a privacy-preserving data search scheme is

proposed that can support both the identifier-based and feature-based product searches. Specifically, two

novel index trees are constructed and encrypted that can be searched without knowing the plaintext data.

Analysis and simulation results demonstrate the security and efficiency of our scheme.

INDEX TERMS product information retrieval; cloud computing; information security

I. INTRODUCTION

Driven by the revolution of information technology in

recent years and with the slowdown in the economic growth,

there is an urgent need to transform China’s entire

industrial chain. To promote an all-around industrial

upgrading, China has proposed the strategy of "Internet +",

and the integration of China’s ecommerce with its

traditional economy has been significantly improved.

Ecommerce has accelerated its expansion from

consumption to various industries and infiltrated all aspects

of social and economic activities, thereby driving the

development of enterprise-level ecommerce, both in scope

and in depth, and facilitating the transformation and

upgrading of enterprises. The Monitoring Report on the

Data of China's Ecommerce Market [1] shows that in 2016,

the volume of ecommerce transactions in China reached

approximately 3.5 trillion dollars, a year-on-year growth

rate of approximately 25.5%.

The rapidly rising number of cyber-transactions have

spawned ecommerce big data. As increasingly numerous

data files are being stored locally in enterprises, the

pressure on local data storage systems greatly increases.

Local hardware failures lead to great damage or loss of data,

which greatly affects the daily operations of the enterprises.

Fortunately, cloud storage techniques came into being

under such circumstances. Cloud computing can collect and

organize a large number of different types of storage

devices by means of various functions, such as cluster

applications, network technology and distributed file

systems. There have already been a number of typical cloud

service products at home and abroad, such as Amazon Web

Services [2], Microsoft Azure [3], i Cloud [4], and App

Engine [5].

mailto:qzeng@ncat.edu

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

As large amounts of data are outsourced to cloud storage

servers, the need for data owners to encrypt the

abovementioned second and third types of sensitive data

makes traditional plain text-based data search solutions no

longer suitable. In addition, restricted by the network

bandwidth and local storage capacity constraints, users find

it impossible to re-download all the data to a local disk and

later decrypt them for use. Based on the above issues,

privacy-preserving data search schemes were born,

designed to ensure that only legitimate users based on

identifiers or keywords, and have the ability to search the

data. These schemes safeguard the users’ personal data but

enable the server to return to the target ciphertext file

according to the query request. Thus, we can ensure the

security of user data and privacy while not unduly reducing

the query efficiency.

In this paper, we focus on the second and third types of

data and design a secure and efficient data search scheme.

For convenience, a practical background is presented as

follows. We first assume that each product has a unique

identifier in the whole company and a detailed description

file. The file includes all of the detailed information of the

product, such as the design flow, design standard, product

features and market position. As we all know, launching the

product to the market earlier than the competitor can

occupy the market quickly and benefit the company

considerably. As a consequence, all of the information

should be kept from the competitors and the public,

considering that the products are time-sensitive.

With the growth of the company, product information

also increases greatly. To improve the stability and

reliability of a data storage system, an intuitive scheme is

moving the local data management system to the cloud.

Cloud computing is widely treated as a promising

information technique (IT) infrastructure because of its

powerful functionalities. It can collect and reorganize huge

resources of storage, computing and applications, which

means that the users can access the IT services in a flexible,

ubiquitous, economic and on-demand manner [10]. An

accompanying challenge is how to protect the

confidentiality of the data while maintaining its

searchability In this paper, we design an encrypted product

information retrieval system. This system includes two

index structures: a hash value index tree, known as an ID-

AVL tree, and a height-balanced index tree, known as a

product retrieval feature (PRF) tree. Based on the two index

trees, two data search methods are supported, i.e., the data

users can search the desired product by the identifier or

feature vector. The elements in the ID-AVL tree are the

hash values of the product identifiers, rather than the

plaintext data, and the tree thus can be directly outsourced

to the cloud. Meanwhile, the elements in the PRF tree are

plaintext data, and they are encrypted by the secure kNN

algorithm before being outsourced. In addition, a detailed

depth-first product search algorithm is designed for the PRF

tree. Simulation results show the effectiveness and

efficiency of the proposed scheme.

We summarize the primary contributions of this paper as

follows:

 A product information outsourcing and searching

system model including the data owner, cloud server

and data users is designed.

 Two index structures supporting efficient product

retrieval are constructed. Moreover, corresponding

search algorithms are also proposed.

 We integrate the secure kNN algorithm into our

scheme to guarantee the security of the outsourced

data while maintaining the its searchability.

 A series of simulations are conducted to illustrate the

security and efficiency of the proposed scheme.

The rest of this paper is organized as follows. We first

summarize the related work of privacy-preserving data

search schemes in Section 2. Next, the data search system

model and preliminary techniques are discussed in Section 3.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

Section 4 presents the encrypted product information

retrieval scheme in detail, and the evaluation of the proposed

scheme is provided in Section 5. Finally, the study’s

conclusions are presented in Section 6.

II. RELATED WORK

Cloud storage services have several advantages, such as ease

of use and cost saving, and they are widely used in many

fields. However, several challenges are associated with them.

With the increasing popularity of cloud storage, security

issues have become an important factor restricting its

development. In recent years, data leakage accidents have

repeatedly occurred in such companies as Microsoft, Google,

Amazon, and China’s Home Inn, Hanting, and Ctrip, and

these incidents have exacerbated users’ worries.

To counter the information leakage, data owners and

enterprises typically outsource the encrypted business data,

rather than the plaintext data, to cloud storage servers. In

general, the outsourced data can be divided into three types.

The first type is the open-resource-type data, which do not

need to be hidden from the cloud server, such as the basic

information of the enterprise and the parameters of products.

The second type is the private data, which need to be

encrypted but are only accessed and decrypted by the data

contributor [6], [7]. This type includes such data as internal

confidential information, intellectual properties and patents.

The third type is the private data that need to be encrypted

but can also be shared with specific users or groups [8], [9].

This type includes internal shared data, hospital’s division-

wide case information and information by some shared

advanced users.

A single keyword Boolean search [11], [12], [13], [14],

[15], [16], [17] is the simplest document retrieval method for

encrypted files. Song et al. [11] first proposed the searchable

encryption scheme in which each word in a document is

encrypted independently, and the users need to scan the

entire document to search for a certain keyword.

Consequently, this method has an extremely high searching

complexity. Next, Goh [12] formally built the security

definitions for symmetric searchable encryption, and a

scheme based on a Bloom filter was designed. The security

definitions are extended in [13], [18]. Due to the lack of a

rank mechanism for the returned results, the data users need

to take a long time to screen the returned results, which is

unacceptable in general. Thus, many single keyword-ranked

search schemes have been proposed [14], [15], [16], [19],

[20]. Though these schemes can return more accurate search

results, they cannot satisfy users’ requirements in most cases,

considering that a single word cannot provide sufficient

information to describe the users’ interests.

Multiple keyword Boolean search schemes allow the data

users to input a set of keywords to search the desired

documents. Conjunctive keyword search schemes [21], [22],

[23] return the documents in which all the keywords

specified by the search query appear; disjunctive keyword

search schemes return all the documents that contains at least

one keyword of interest. Predict keyword search schemes

[24], [25], [26] have been proposed to support both

conjunctive and disjunctive search patterns. However, the

returned results are still not sufficiently suitable to the users

because the degrees of importance of the keywords are not

considered in these schemes.

In [27], Cao et al. first proposed a basic privacy-preserving

multi-keyword ranked search scheme based on a secure kNN

algorithm [28]. A set of strict privacy requirements are

established, and two schemes are later proposed to improve

the security and search experience. However, an apparent

drawback of this scheme is that the search efficiency is linear

with the cardinality of the document collection, and

consequently, it cannot be used to process extremely large

document databases. Xia et al. [29] designed a keyword

balanced binary tree to organize the document vectors and

proposed a “Greedy Depth-First Search” algorithm to

improve the search efficiency. Moreover, the index tree can

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

be updated dynamically with an acceptable communication

burden. Chen et al. [30] took the relationships of documents

into consideration, and a hierarchical-clustering-based index

structure was designed to improve the search efficiency. In

addition, a verification scheme was also integrated into their

scheme to guarantee the correctness of the results. However,

these two index trees in [29] and [30] can be further

improved in terms of efficiency and accuracy as discussed in

Section 1. Fu et al. [31] presented a personalized multi-

keyword ranked search scheme in which an interest model of

the users is integrated into the document retrieval system to

support a personalized search and improve the users’ search

experience. Specifically, the interest model of a data user is

built based on his search history with the help of WordNet

[32] in order to depict his behaviors in fine grit level.

However, this scheme does not support dynamic update

operations because the document vectors are constructed

based on all the documents. In addition, though an MDB-tree

is employed to improve the search efficiency, the

effectiveness of the tree is difficult to predict. Several other

related studies in the field of cloud computing can be found

in [35], [36], [37], [38], [39].

III. SYSTEM MODEL AND THE INDEX TREES

3.1. Product Retrieval System

As shown in Fig. 1, the entire product retrieval system model

is composed primarily of three entities: the data manager, the

cloud server and the data user. The primary responsibilities

of these three entities are presented in the following.

The data manager is responsible for managing the product

and collecting the product information. In addition, the data

manager needs to encrypt the product information file by a

symmetric encryption technique before outsourcing the data

to the cloud server. To improve the security of the files, each

file is encrypted by a single secret key, and the keys of

different files are independent. Furthermore, to improve the

search efficiency, an index structure is constructed for the

outsourced data. At first, an identifier index structure is

constructed based on the hash function and height-balanced

binary search tree. Then, a feature vector tree is built for all

the feature vectors of the product, and it is encrypted by the

secure kNN algorithm.

When a data user wants to search a set of chosen products,

she needs to generate a trapdoor to describe her interest. Two

types of the trapdoor can be provided, i.e., a set of hash

values of the desired product information files or a set of

feature vectors. For the first type of trapdoor, a set of

encrypted files with the same hash identifiers are returned,

and for the second type trapdoor, the most relevant encrypted

files are returned. The data user can obtain the plaintext files

by decrypting the returned files with the help of the

symmetric secret keys. These secret keys are provided by the

data manager.

The cloud server stores all the data uploaded by the data

manager. When a data user needs to search the data in the

cloud, she first generates a trapdoor, which is sent to the

cloud server. A search engineer is employed by the cloud

server to act as a bridge between the data users and the

encrypted data. Though the cloud server cannot get the

plaintexts of the data, it should be capable of sending the

Trap
door

Update

Cloud

server

Data

manager

Data

user

Fig. 1. Encrypted product information retrieval system model

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

accurate search result of the trapdoor to the data users. Of

course, the returned data are ciphertext, and the data user

needs to decrypt them by the symmetric secret keys which

are provided by the data manager.

3.2. ID-AVL Tree

To construct the ID-AVL tree, we first encrypt all the

product identifiers based on a hash function, hash(). Next,

each node in the ID-AVL tree contains a hash value of the

product ID, and all of the hash values are organized based on

an AVL tree [33] as shown in Fig. 2. Two important

properties of AVL, which can help us to maintain the hash

values, are presented as follows. First, the ID-AVL tree can

be updated flexibly by inserting a node, deleting a node and

modifying a node. Correspondingly, we can update the ID-

AVL tree from time to time by changing the product

information. Second, the values of the left child nodes of a

parent node are always smaller than that of the parent node;

the values of the right child nodes of a parent node are

always larger than that of the parent node. In theory, the time

complexity of inserting, deleting and searching a node are all

log(N), where N is the number of nodes in the tree. In this

paper, we construct the ID-AVL tree based on the algorithm

in [33].

3.3. Product Retrieval Tree

The feature dictionary of the products is denoted as

𝐷 = *𝑓 , 𝑓 , ⋯ , 𝑓 +, and the feature set 𝑆 of any product 𝑃

must be a subset of 𝐷 , i.e., 𝑆 ∈ 2* , ,⋯, + . Then, the

feature vector 𝑉 of product 𝑃 is constructed as follows.

 The initial vector of 𝑃 is a 1 × 𝑚 vector, and all the

elements in the vector are 0;

 We orderly scan all the elements in the initial vector

and assign a value to the element of feature f if the

feature of P can be quantized.

 Based on the different degrees of importance of the

features, a weight is employed to multiply the

elements in the vector to reflect this.

To search the product information, a trapdoor needs to be

constructed by the data user in a similar way, and the

similarities between the trapdoor 𝑉 and the product feature

𝑉 is calculated as sim(𝑉 , 𝑉) = 𝑉 ∙ 𝑉 . Moreover, the

similarity between two the vectors 𝑉 and 𝑉 is defined as

sim(𝑉 , 𝑉) = 𝑉 ∙ 𝑉 . Next, the product feature vectors are

organized as hierarchical clusters according to their

similarities. Each node in the tree represents a cluster

composed of a set of product feature vectors or sub-

clusters. The PRF vector of a node is a quintuple

summarization about a cluster.

Given 𝐾 𝑚 -dimensional product feature vectors in a

cluster: {𝑉 } where 𝑗 = 1,2,⋯ , 𝐾 , the PRF vector of the

cluster is denoted as a quintuple:

𝑃𝑅𝐹 = (𝐾, 𝐿𝑆, 𝑆𝑆, 𝑉 , 𝑉) , where 𝐾 is the number of

product feature vectors in the cluster, 𝐿𝑆 is the linear sum of

the 𝐾 product feature vectors, i.e., 𝐿𝑆 = ∑ 𝑉

 , 𝑆𝑆 is the

square sum of the 𝐾 product feature vectors, i.e., 𝑆𝑆 =

∑ 𝑉

 (𝑆𝑆 is a numerical value rather than a vector), 𝑉

denotes a vector consisting of 𝑚 values which are

calculated as follows:

𝑉 ,𝑖- = 𝑚𝑖𝑛(𝑉 ,𝑖-, 𝑉 ,𝑖-,⋯ , 𝑉 ,𝑖-), (1)

where 𝑉 ,𝑖- is the 𝑖 -th dimensional value of 𝑉 , and

similarly, 𝑉 is calculated as follows:

𝑉 ,𝑖- = 𝑚𝑎𝑥(𝑉 ,𝑖-, 𝑉 ,𝑖-,⋯ , 𝑉 ,𝑖-). (2)

4

2 6

1 3 5 7

Fig. 2. Product hash value index tree

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

Based on a PRF vector, the centroid of a cluster 𝐶 can be

easily calculated as

𝑐 = 𝐿𝑆 𝐾⁄ , (3)

and the relevance score between cluster 𝐶 and a product

vector 𝑉 is defined as

RScore(𝐶, 𝑉) = 𝑐 ∙ 𝑉 . (4)

Similarly, the relevance score between cluster 𝐶 and a

query vector 𝑉 is defined as

RScore(𝐶, 𝑉) = 𝑐 ∙ 𝑉 . (5)

Further, the radius of cluster 𝐶 is defined as follows:

𝑅 = √∑ (𝑉 − 𝑐)
 𝐾⁄ , (6)

and it can be calculated by the PRF vector as follows:

𝑅 = √(𝑆𝑆 − 𝐿𝑆 𝐾⁄) 𝐾⁄ . (7)

Theorem 1. (PRF Additivity Theorem): If we merge two

disjoint clusters with PRF vectors:

𝑃𝑅𝐹 = (𝐾 , 𝐿𝑆 , 𝑆𝑆 , 𝑉 , 𝑉) and 𝑃𝑅𝐹 =

(𝐾 , 𝐿𝑆 , 𝑆𝑆 , 𝑉 , 𝑉) , then the PRF vector of the

combined cluster is

𝑃𝑅𝐹 = 𝑃𝑅𝐹 + 𝑃𝑅𝐹 = (𝐾 + 𝐾 , 𝐿𝑆 + 𝐿𝑆 , 𝑆𝑆 +

𝑆𝑆 , 𝑉 , 𝑉), (8)

where 𝑉 ,𝑖- = 𝑚𝑖𝑛(𝑉 ,𝑖-, 𝑉 ,𝑖-) and 𝑉 ,𝑖- =

𝑚𝑎𝑥(𝑉 ,𝑖-, 𝑉 ,𝑖-).

Proof：The proof consists of straightforward algebra.□

In the similar way, we can obtain the PRF Subtraction

Theorem, which can be used to divide two clusters, though

𝑉 and 𝑉 need to be recalculated. The structure of a

PRF tree is presented in Fig. 3. It can be observed that each

leaf node is composed of a set of similar product vectors

and its PRFvector is directly extracted from the product

vectors. The similar leaf nodes agglomerate with each other

to compose the non-leaf nodes until all the product vectors

belong to a huge cluster at the a root node. Based on

Theorem 1, the PRFvectors of the non-leaf nodes and the

root node are calculated based on the PRF vectors of all

their child nodes.

IV. ENCRYPTED PRODUCT INFORMATION RETRIEVAL

SCHEME

4.1. Construction of Product Retrieval Tree

A PRF tree has three main parameters: branching factors

𝐵 , 𝑎𝑛𝑑𝐵 and threshold 𝑇, which are preset by the data

owner. Each non-leaf node 𝑁𝐿 contains at most 𝐵 child

nodes, and it is defined as follows:

𝑁𝐿 = (𝑃𝑅𝐹, 𝑃𝑅𝐹 , 𝑐ℎ𝑖𝑙𝑑 , ⋯ , 𝑃𝑅𝐹
, 𝑐ℎ𝑖𝑙𝑑

) (9)

where 𝑃𝑅𝐹 is the PRF vector of the whole cluster, 𝑃𝑅𝐹 is

the PRF vector of the 𝑖-th sub-cluster and 𝑐ℎ𝑖𝑙𝑑 is a pointer

to the child node representing the sub-cluster. A non-leaf

node represents a cluster made up of all the sub-clusters

represented by its child nodes. A leaf node 𝐿 contains at

most 𝐵 product vectors, and it is defined as follows:

𝐿 = (𝑃𝑅𝐹, 𝑐ℎ𝑖𝑙𝑑 , ⋯ , 𝑐ℎ𝑖𝑙𝑑
), (10)

where 𝑃𝑅𝐹 is the PRF vector of the cluster, 𝑐ℎ𝑖𝑙𝑑 is a

pointer to the 𝑖 -th product vector in the cluster.

Furthermore, the cluster of a leaf node must satisfy a

threshold requirement: the radius of the cluster (11) must be

less than 𝑇. The default values in the nodes are set to 𝑛𝑢𝑙𝑙.

The PRF tree is constructed in an incremental manner,

and the process of inserting a product vector 𝑉 into the

PRF tree is presented as follows:

 Identifying the appropriate leaf node: Starting from

the root, 𝑉 recursively descends the PRF tree by

choosing the closest child node according to the

relevance scores between 𝑉 and the sub-clusters as

...

...

...

Minor-
cluster

Product
vectors

Macro-
cluster

Root node Root

PRF PRF

PRFPRFPRF

Fig. 3. Product retrieval feature tree

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

defined in (11) until it reaches a leaf node.

 Modifying the leaf node: When V reaches a leaf

node L , it tests whether L can “absorb” V without

violating the constraints of B and T . If so, V is

inserted into L and the PRF vector of L is updated.

If not, we must split L to two leaf nodes. Node

splitting is performed by choosing the farthest pair

of product vectors as seeds and redistributing the

remaining product vectors based on the closest

criteria. The PRF vectors of the two new leaf nodes

need to be recalculated.

 Modifying the path from the root node to the leaf

node: After inserting V into a leaf node, we need to

update the PRF vector for all the nodes on the path

to the leaf node. In the absence of a split, this

simply involves updating PRF vectors based on

Theorem 1. A leaf node split requires us to insert a

new leaf node into the parent node. If the parent

node has space for the new leaf node, we only need

to insert the new leaf node into it and then update

the PRF vector for the parent node. In general,

however, we may have to split the parent node as

well, and so on, up to the root. If the root is split,

the tree height increases by one.

4.2. Retrieval Process of the Interested Products

In this paper, the data users can retrieve the interested

product in two ways, i.e., retrieving the products by their

identifiers or the product feature vector. When a data user

wants to search a product based on its identifier, she first

needs to encrypt the identifier based the on the hash

function, hash(). Next, the hash value of the identifier is

sent to the cloud server. The cloud server is responsible for

searching for the hash value in the ID-AVL tree, and once

the hash value is found, the corresponding encrypted

production information is sent to the data user. Finally, the

data user can decrypt the product information based on the

secret keys, and the data retrieval process is completed.

Moreover, in certain cases, the data user may want to

search the product based on the features. Initially, the data

user needs to construct the feature vector of the product as

discussed in Section 3.3. Then, we need to design a depth-

first search algorithm for the PRF tree, and that algorithm is

presented in Algorithm 1.

In Algorithm 1, the 𝑘thScore represents the smallest

relevance score in the current result list 𝑅𝐿𝑖𝑠𝑡, which stores

the most 𝑘 relevant accessed document vectors with 𝑉 and

the corresponding relevance scores. In addition, we employ

the variable 𝑆𝑡𝑎𝑐𝑘 to store the nodes which need to be

Algorithm 1: (aPR treewithroot , 𝑎 uer vector𝑉)

1: 𝑢 ;

2: while 𝑢 is not a leaf node

3: Calculate all the relevance scores between the child nodes of 𝑢

with 𝑉 based on (5);

4: 𝑢 the most relevant child node;

5: end while

6: Select the most relevant 𝑘 document vectors in 𝑢 by RScore(𝑉 , 𝑉) and

construct 𝑅𝐿𝑖𝑠𝑡;

7: 𝑆𝑡𝑎𝑐𝑘 ush();

8: while 𝑆𝑡𝑎𝑐𝑘 is not empty

9: 𝑢 𝑆𝑡𝑎𝑐𝑘 o ();

10: if the node 𝑢 is not a leaf node

11: if RScore(𝑉 , , 𝑉) 𝑘thScore

12: Sort the child nodes of 𝑢 in ascending order based on the relevant

scores with 𝑉 ;

13: Push the children of 𝑢 into 𝑆𝑡𝑎𝑐𝑘 in order, i.e., the most relevant

child is latest inserted into 𝑆𝑡𝑎𝑐𝑘;

14: else

15: break;

16: end if

17: else

18: Calculate the relevance scores between the document vectors in the

leaf node with 𝑉 and update 𝑅𝐿𝑖𝑠𝑡;

19: end if

20: end while

21: return 𝑅𝐿𝑖𝑠𝑡;

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

searched in the future. In addition, 𝑆𝑡𝑎𝑐𝑘 ush(𝑢) inserts

node 𝑢 into 𝑆𝑡𝑎𝑐𝑘 and 𝑆𝑡𝑎𝑐𝑘 o () returns the latest

inserted node.

4.3. Encryption of the Product Retrieval Tree

For each product 𝑃 , two types of information are first

extracted, including its identifier 𝑖 and the product vector

𝑉 . We encrypt the identifier 𝑖 through a hash function,

hash(). The construction process of the 𝐼𝐷 − 𝐴𝑉𝐿 tree is

presented as follows. The constructed 𝐼𝐷 − 𝐴𝑉𝐿 tree can be

directly outsourced to the cloud server because it stores

only a set of hash values, rather than the plaintext identifier.

Based on the product vectors, the process of building the

PRF tree has been presented in Section 4.2. In contrast to

the 𝐼𝐷 − 𝐴𝑉𝐿, the PRF tree needs to be encrypted before

being outsourced. In the PRF tree, we treat 𝐿𝑆, 𝑉 and

𝑉 to the same as product vectors and encrypt them in the

same way. Note that parameter 𝐾 in a PRF vector does not

need to be encrypted, and 𝑆𝑆, which will not be used in the

search process, does not need to be sent to the cloud server.

Before encrypting a product vector 𝑉 in the PRF tree, we

first extend it to (𝑚 + 𝑚) dimensions. In addition, we spilt

each dimension of 𝑉 ,𝑖- into 𝑉 ,𝑖-
 and 𝑉 ,𝑖-

 . Specifically,

if 𝑆 = 0 , 𝑉 ,𝑖-
 and 𝑉 ,𝑖-

 will be set equal to V ,i- ;

otherwise, V ,i-
 and V ,i-

 will be set as two random

numbers whose sum is equal to V ,i-. Next, we randomly

select two invertible matrices M , M and encrypt 𝑉 as

𝐸 = *𝑀
 𝑉

, 𝑀

 𝑉

+.

Once a search request 𝒮ℛ is received by the proxy server,

it first extracts its parameters including 𝐼𝐷 and 𝑣𝒮ℛ .

Parameter 𝐼𝐷 is encrypted by hash() and we get ℎ . We

extend 𝑣𝒮ℛ to (𝑚 + 𝑚) dimensions. Specifically, if

𝑆 = 0, the 𝑖-th dimension of 𝑉 corresponds to a feature

𝑤 , which is extracted from 𝒲 in order, and 𝑉 ,𝑖- is set to

𝑤
; otherwise, this dimension is an artificial dimension

and 𝑉 ,𝑖- is set to a random number. Note that the value of

the last artificial dimension is not a random number, and it

should be calculated carefully to guarantee that the dot

product of the artificially added dimensions in the product

vectors and in 𝑉 is 0. Further, we spilt 𝑉 ,𝑖- into 𝑉 ,𝑖-
 and

𝑉 ,𝑖-
 . Specifically, if 𝑆 = 1, 𝑉 ,𝑖-

 and 𝑉 ,𝑖-
 will be set

equal to 𝑉 ,𝑖-; otherwise, 𝑉 ,𝑖-
 and 𝑉 ,𝑖-

 will be set as

two random numbers whose sum is equal to 𝑉 ,𝑖-. Finally,

we encrypt 𝑉 as 𝐸 = *𝑀
 𝑉

 , 𝑀
 𝑉

 +. In this case,

the relevance score of 𝑉 and 𝑉 defined in Section 3.2 can

be calculated as follows:

RScore(𝑉 , 𝑉) = 𝑉 ∙ 𝑉 = 𝐸 ∙ 𝐸 . (11)

The trapdoor 𝒯𝒟 is composed of the hash values of the

filename and authors and 𝐸 .

V. PERFORMANCE EVALUATION

5.1. Security Analysis

In our scheme, the outsourced data includes the product

information file, ID-AVL tree and PRF tree. The product

information files are encrypted symmetrically based on the

independent secret keys, and the cloud server does not have

the secret keys. In this case, the plaintext files cannot be

decrypted by the cloud server. In the ID-AVL tree, the

stored values are the hash values of the product identifiers,

and they contain no valuable information about products.

The PRF tree is encrypted by the secure kNN algorithm

before being outsourced to the cloud server. Though the

cloud server knows the encrypted feature vectors in the

tree, the cloud server does not know the matrices M , M ;

hence, the plaintext vectors in the tree cannot be recovered.

5.2. Product Information Search Efficiency

In this section, we evaluate the search efficiency of our

scheme. First, we evaluate the construction time of the

index structures of the product information. Specifically, we

compare our scheme with the MRSE scheme [27]. To

decrease the bias of the data manager who is responsible for

generating the vectors and the hash values, in this paper we

employ the Enron Email Data Set [34] to test our scheme.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

Specifically, the data set is employed to act as the product

information files. Moreover, the vectors of the product are

assumed to be extracted from the data set based on the TF-IDF

model, and then the vectors are organized by the PRF tree.

As shown in Fig. 4, with the increasing number of

products, the construction time of PRF tree and the index

structures in MRSE monotonously increase. This is

reasonable considering that each product information file

needs to be scanned for a time to get the feature vectors.

The construction time of the PRF tree is slightly longer than

that of the MRSE scheme, because the vectors need to be

further inserted to the trees in the PRF tree. Apparently, the

ID-AVL tree is considerably simpler, and the construction

time can be ignored compared with the other two trees.

To search the desired product information, the data user

needs to first generate the trapdoor, which is sent to the

cloud server. The times of constructing the trapdoors with

the increasing of the size of the feature dictionary are

presented in Fig. 5. The search requests based on the

identifiers are independent of the feature dictionary, and

hence, the time of constructing the trapdoors for the ID-

AVL tree remains stable. However, the construction time of

the trapdoors for the MRSE and PRF trees monotonously

increase with the increasing of the feature dictionary’s size.

This is reasonable considering that the size of the product

feature vector is equal to the size of the feature dictionary.

In addition, the time costs for the MRSE and PRF trees are

similar to each other because the processes of generating

the trapdoors are similar.

The search time of a trapdoor in the cloud server is

presented in Fig. 6. It can be observed that the MRSE

scheme consumes the most time to execute a search

operation. Moreover, the search time increases

monotonously with the increasing of the number of

products. This increase can be explained by the fact that in

MRSE, the feature vectors are stored in order, and they do

not employ any index structure. In this case, the cloud

server needs to scan all the product feature vectors to get

the search result. The PRF tree organizes the vectors by a

height-balanced tree, and most paths in the tree are pruned

in the search process. As a consequence, the search

efficiency is greatly improved. Finally, we can observe that

the ID-AVL tree is the most efficient index structure, which

can be explained by the fact that the ID-AVL tree is

Fig. 5. Time of constructing the trapdoors

Fig. 4. Construction time of the index structures

Fig. 6. Search time with different number of products

2000 2500 3000 3500 4000 4500 5000 5500 6000
0

0.1

0.2

0.3

0.4

0.5

Size of the feature dictionary

T
im

e
 o

f
c
o
n

s
tr

u
c
ti

n
g

 t
h
e

 t
ra

p
d

o
o

r
(s

)

MRSE

PRF tree

ID-AVL tree

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

Number of products

C
o
n

s
tr

u
c
ti

o
n

 t
im

e

MRSE

PRF tree

ID-AVL tree

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

600

Number of products

S
e
a

rc
h
 t

im
e

 (
s)

MRSE

PRF tree

ID-AVL tree

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

considerably simpler, and the search process is also very

easy.

With the expanding growth of companies, more and more

product information needs to be outsourced to the cloud

server. Consequently, we need to update the index trees

from time to time, and the update efficiency also affects the

performance of our scheme significantly. As shown in Fig.

7, the update time of both the PRF tree and the ID-AVL tree

increases slightly with the increasing number of products,

which is reasonable, considering that we need to search the

trees to identify the proper location of the inserted node. In

addition, updating the PRF tree consumes much more

energy than that of updating the ID-AVL tree. This can be

explained by the fact that the ID-AVL tree is much simpler

than the PRF tree, and in theory only log(𝑁) nodes need to

be searched. Though quite many paths in the PRF tree are

pruned in the search process, the number of the search paths

is considerably larger than log(𝑁) and more time is thus

consumed in the PRF tree.

VI. CONCLUSIONS

In this paper, we designed a secure and efficient product

information retrieval scheme based on cloud computing.

Specifically, two index structures, including a hash value

AVL tree and a product vector retrieval tree, are

constructed, and they support an identifier-based product

search and feature-vector-based product search,

respectively. Correspondingly, two search algorithms are

designed to search the two trees. To protect the product

information privacy, all the outsourced data are encrypted.

The product information is symmetrically encrypted based

on a set of independent secret keys, and the product vectors

are encrypted based on the secure kNN algorithm. Security

analysis and simulation results illustrate the security and

efficiency of the proposed scheme.

REFERENCES

[1] www.100EC.cn. 2016 Monitoring Report on the Data of China's E-

commerce Market [EB/OL]. http://www.100ec.cn/zt/16jcbg/,2017-

05-24

[2] Amazon. Amazon S3. http://aws.amazon.com/s3/

[3] Windows azure. http://www.microsoft.com/windowsazure/

[4] Apple i Cloud. http://www.icloud.com/

[5] Google App Engine. http://appengine.google.com/

[6] Golle P.Staddon J,Waters B. Secure Conjunctive Keyword Search

over Data[C]. Springer, 2004.

[7] Song D X,Wanger D.Perrig A. Practical Techniques for Searched on

Encrypted Data[C].IEEE,2000.

[8] Boneh D,Di Crescenzo G,Ostrovsky R. et al. Public Key Encryption

with Keyword Search: EUROCRYPT[C].Springer,2004.

[9] Rhee H S.Park J K,Susilo W. et al. Trapdoor Security in A

Searchable Public-Key Encryption Scheme with A Designated

Tester[J].Journal of Systems and Software,2010,83(5):763-771

[10] Ren, Kui, Cong Wang, and Qian Wang. "Security challenges for the

public cloud." IEEE Internet Computing 16.1 (2012): 69-73.

[11] Song, Dawn Xiaoding, David Wagner, and Adrian Perrig. "Practical

techniques for searches on encrypted data." Security and Privacy,

2000. S&P 2000. Proceedings. 2000 IEEE Symposium on. IEEE,

2000.

[12] Goh, Eu-Jin. "Secure indexes." IACR Cryptology ePrint

Archive 2003 (2003): 216.

[13] Curtmola, Reza, et al. "Searchable symmetric encryption: improved

definitions and efficient constructions." Journal of Computer

Security 19.5 (2011): 895-934.

Fig. 7. Time consumption of inserting a node into the trees

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of products

T
im

e
 o

f
in

se
rt

in
g

 a
 p

ro
d

u
c
t

fe
a
tu

re
 v

e
c
to

r
(s

)

PRF tree

ID-AVL tree

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

[14] Swaminathan, Ashwin, et al. "Confidentiality-preserving rank-

ordered search." Proceedings of the 2007 ACM workshop on

Storage security and survivability. ACM, 2007.

[15] Wang, Cong, et al. "Enabling secure and efficient ranked keyword

search over outsourced cloud data." IEEE Transactions on parallel

and distributed systems 23.8 (2012): 1467-1479.

[16] Zerr, Sergej, et al. "Zerber+ r: Top-k retrieval from a confidential

index." Proceedings of the 12th International Conference on

Extending Database Technology: Advances in Database Technology.

ACM, 2009.

[17] Jarecki, Stanislaw, et al. "Outsourced symmetric private information

retrieval." Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security. ACM, 2013.

[18] Chang, Yan-Cheng, and Michael Mitzenmacher. "Privacy

preserving keyword searches on remote encrypted data."

International Conference on Applied Cryptography and Network

Security. Springer Berlin Heidelberg, 2005.

[19] Wang, Cong, et al. "Secure ranked keyword search over encrypted

cloud data." Distributed Computing Systems (ICDCS), 2010 IEEE

30th International Conference on. IEEE, 2010.

[20] Boneh, Dan, et al. "Public key encryption with keyword search."

International Conference on the Theory and Applications of

Cryptographic Techniques. Springer Berlin Heidelberg, 2004.

[21] Ballard, Lucas, Seny Kamara, and Fabian Monrose. "Achieving

efficient conjunctive keyword searches over encrypted data."

International Conference on Information and Communications

Security. Springer Berlin Heidelberg, 2005.

[22] Hwang, Yong Ho, and Pil Joong Lee. "Public key encryption with

conjunctive keyword search and its extension to a multi-user

system." International Conference on Pairing-Based Cryptography.

Springer Berlin Heidelberg, 2007.

[23] Zhang, Bo, and Fangguo Zhang. "An efficient public key encryption

with conjunctive-subset keywords search." Journal of Network and

Computer Applications 34.1 (2011): 262-267.

[24] Lewko, Allison, et al. "Fully secure functional encryption:

Attribute-based encryption and (hierarchical) inner product

encryption." Annual International Conference on the Theory and

Applications of Cryptographic Techniques. Springer Berlin

Heidelberg, 2010.

[25] Shen, Emily, Elaine Shi, and Brent Waters. "Predicate privacy in

encryption systems." Theory of Cryptography Conference. Springer

Berlin Heidelberg, 2009.

[26] Katz, Jonathan, Amit Sahai, and Brent Waters. "Predicate

encryption supporting disjunctions, polynomial equations, and inner

products." Annual International Conference on the Theory and

Applications of Cryptographic Techniques. Springer Berlin

Heidelberg, 2008.

[27] Cao, Ning, et al. "Privacy-preserving multi-keyword ranked search

over encrypted cloud data." IEEE Transactions on parallel and

distributed systems 25.1 (2014): 222-233.

[28] Wong, Wai Kit, et al. "Secure knn computation on encrypted

databases." Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data. ACM, 2009.

[29] Xia, Zhihua, et al. "A secure and dynamic multi-keyword ranked

search scheme over encrypted cloud data." IEEE Transactions on

Parallel and Distributed Systems 27.2 (2016): 340-352.

[30] Chen, Chi, et al. "An efficient privacy-preserving ranked keyword

search method." IEEE Transactions on Parallel and Distributed

Systems 27.4 (2016): 951-963.

[31] Fu, Zhangjie, et al. "Enabling personalized search over encrypted

outsourced data with efficiency improvement." IEEE transactions

on parallel and distributed systems 27.9 (2016): 2546-2559.

[32] Miller, George A. "WordNet: a lexical database for

English." Communications of the ACM 38.11 (1995): 39-41.

[33] Georgy Adelson-Velsky, G.; Evgenii Landis (1962). "An algorithm

for the organization of information". Proceedings of the USSR

Academy of Sciences (in Russian). 146: 263–266. English

translation by Myron J. Ricci in Soviet Math. Doklady, 3:1259–

1263, 1962

[34] W.W. Cohen, "Enron Email Data Set,"

https://www.cs.cmu.edu/~./enron/, 2015.

[35] C. Zhu, J. J. P. C. Rodrigues, V. C. M. Leung, L. Shu, and L. T.

Yang, “Trust-Based Communication for Industrial Internet of

Things,” IEEE Communications Magazine, 2018.

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2816919, IEEE Access

VOLUME XX, 2017 9

[36] C. Zhu, L. Shu, V. C. M. Leung, S. Guo, Y. Zhang, and L. T. Yang,

“Secure Multimedia Big Data in Trust-Assisted Sensor-Cloud for

Smart City,” IEEE Communications Magazine, vol. 55, no. 12, pp.

24-30, Dec. 2017.

[37] 3) C. Zhu, H. Zhou, V. C. M. Leung, K. Wang, Y. Zhang, and L. T.

Yang, “Toward Big Data in Green City,” IEEE Communications

Magazine, vol. 55, no. 11, pp. 14-18, Nov. 2017.

[38] 4) C. Zhu, V. C. M. Leung, K. Wang, L. T. Yang, and Y. Zhang,

“Multi-Method Data Delivery for Green Sensor-Cloud,” IEEE

Communications Magazine, vol. 55, no. 5, pp. 176-182, May 2017.

[39] C. Zhu, X. Li, V. C. M. Leung, L. T. Yang, E. C.-H. Ngai, and L.

Shu, “Towards Pricing for Sensor-Cloud,” IEEE Transactions on

Cloud Computing, 2017.

YINGSI ZHAO was born in Beijing, CHINA in 1984. She received the

B.S. and M.S. degrees in communication engineering from Beijing

Jiaotong University, Beijing, in 2007 and 2009, and the PH.D. Degree in

Management from Beijing Jiaotong University,

Beijing, CHINA, in 2014.

 From 2007 to 2010, she was a sales engineer of

Motorola Inc. Since 2014, she has been a teacher

with the Business Administration Department,

Beijing Jiaotong University, School of Economics

and Management. She is the author of more than

10 articles, and she presided over 7 projects as Principal Investigator. Her

research interests mainly include Marketing, Innovation &

Entrepreneurship, Cloud Computing & its Applications, Network Public

Opinion and so on.

QINGAN ZENG received his PhD degree in

Electronic Engineering from Shizuoka University

in Japan, in 1997. Currently, he is a faculty

member in the Department of Computer Systems

Technology and a Director of Wireless & Mobile

Networking Laboratory (WMN Lab) at North

Carolina A&T State University (USA). He has published more than 100

books, book chapters, refereed journal papers, and conference proceeding

papers. His research interests are in all areas of wireless and mobile

networks, ad hoc and sensor networks, handoff, mobility management,

heterogeneous networks, system modeling and performance analysis,

simulations, QoS, security, NoC, smart grid, smart grid communications,

PLC, social networks, and queuing theory. He is a senior member of IEEE.

