Design of Circular Overhead Water Tank

${ }^{1]}$ Neha. S. Vanjari, ${ }^{[2]}$ krutika. M. Sawant, ${ }^{[3]}$ Prashant .S. Sisodiya, ${ }^{[4]}$ S. B. Patil ${ }^{[1][2][3]}$ Students, ${ }^{[4]}$ Associate Professor Department of Civil Engineering Datta Meghe College of Engineering, Sector 3, Airoli, Navi Mumbai-400708, India

Abstract

The water is the most essential element to a life on the earth. It is a liquid which covers about 71.4% of the earth. It is the most ubiquitous substance in the human body. The approximate consumption of water in a population of around 20,000 is 200 litres/head/day. The water is also important in the agricultural and industrial sectors. Water demand is one of the key issues in water supply planning. To overcome this issue, the present water tank designs have to be modified. Overhead water tank is the most effective storing facility used for domestic or even industrial purpose. The design and construction methods in reinforced concrete are influenced by the prevailing construction practices, the physical property of the material and the climatic conditions, linings, the ground conditions i.e. type of soil, soil bearing capacity etc. This paper gives an overall designing procedure of an Overhead Circular Intze tank using LIMIT STATE METHOD from IS-3370:2009. In IS-3370:2009, limit state method considering two aspects mainly limits the stress in steel and limits the cracking.

Index Terms-Economical Design, Intze tank, IS-3370:2009, Limit State Method

I. INTRODUCTION

A water tank is container for storing water and any other liquid. The main objectives in any design of water tank are to provide safe drinkable water after storing for long time, optimizing cost, strength, service life and performance during special situations like earthquakes. The other objectives are to maintain pH of water and to prevent the growth of microorganism. Water is susceptible to a number of ambient negative influences, including bacteria, viruses, algae, changes in pH , and accumulation of minerals, accumulated gas. A design of water tank or container should do no harm to the water.

II. AIMS AND OBJECTIVES

- To study the various forces acting on a water tank. Understanding the most important factors that plays role in designing of a water tank
- To study the guidelines of design of water tank according to IS code and checking the design.
- To know about the design philosophies of water tank design.
- Preparing a water tank design which is economical and safe, providing proper steel reinforcement in concrete and studying its safety according to various code.

III. INTZE TANK

A water tower built in accordance with the Intze Principle has a brick shaft on which the water tank sits. The base of the tank is fixed with a ring anchor made of iron or steel, so that only vertical, not horizontal, forces are transmitted to the tower. Due to the lack of horizontal forces the tower shaft does not need to be quite as solidly built.
The main advantages of such tank are that the outward thrust from top of conical part is resisted by ring beam B3

IV. METHOD OF ANALYSIS

A. ANALYSIS OF SHELL STRUCTURES

- The first step is to make imaginary cut at the junction and assume the imaginary supports condition consistence with the membrane analogy. This assumption permits the determination of membrane forces and deformation due to different loading condition.
- The second step is to apply restraining forces at the edges consistent with the actual support condition to make the deformation compatible at the junction.

B. ANALYSIS OF ROOF WALL JOINT

- The roof may be designed as a spherical or conical dome.

C. ANALYSIS OF THE SPHERICAL BOTTOM CONICAL
 WALL JOINT

- The joint may either be supported on columns or on a circular shaft.
- If the tank is supported on columns, the two shells are connected through a ring beam to the columns and, if the tank is supported on a circular shaft, the threw shells can be jointed together without a ring beam.

D. MEMBRANE ANALYSIS

- In the membrane analysis the member are assumed to act independent of the others. Hence individually all components of the structure are designed.
- The member are therefore subjected to only direct stresses and as the joints are not considered rigid i.e. as all members are acting individual bending moment is not introduced.
VARIOUS STRUCTURAL ELEMENTS OF INTZE TANK ARE:
- Top Spherical dome
- Top ring beam B1
- Side wall (circular)
- Bottom ring beam B2
- Bottom Spherical dome
- Bottom ring beam B3

V. DESIGN OF INTZE TANK

A. POPULATION FORCAST

POPULATION FORECAST FOR A VILLAGE
Table II - POPULATION FORECAST

Year	Populati on	X increa se	Y incre ase	\% incr ease	\% Decreas e
1970	1200	-	-	-	-
1980	2000	800	-	66.6 7	-
1990	2800	800	0	40.0 0	26.67
2000	4000	1200	400	42.8 7	-2.87
Sum	-	2800	400	149 54	23.8
Avg.	-	933.33	200	49.8 4	11.9

Arithmetic Progression Method

Population $(\mathrm{P})=\mathrm{P}_{\mathrm{o}}+\mathrm{nx}=4000+1 \times 933.33=4934$
2. Geometric Progression Method
$\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{o}}\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{n}}$
$r=\sqrt[3]{0.6667 \times 0.4 \times 0.4287}=0.48533=48.53 \%$
$\mathrm{P}_{2010}=4000 \times\left(1+\frac{48.53}{100}\right)^{1}=5942$
3. Incremental Increase Method
$\mathrm{P}_{\mathrm{n}}=\mathrm{Po}+\mathrm{nx}+\frac{\mathrm{n} \times(\mathrm{n}+1)}{2} \times \mathrm{y}$
When $\mathrm{n}=1$;
$\mathrm{P}_{2010}=4600$
Assuming changing increase rate method
$\mathrm{P}_{2010}=(42.87-11.9) \times \frac{4000}{1000}=6118.8$
Considering geometric increase method $P=5942=6000$
Therefore, design population of 6000
Assuming per capita demand 165 lpcd
Capacity required $=165 \times 6000$ lpcd $=990000 \mathrm{lpcd}$
In one day $=990000 \mathrm{lpcd}$
Design volume or capacity $=1 \times 10^{6} \mathrm{ltr}=1000 \mathrm{~m}^{3}$

B. DESIGN WITH MEMBRANE ANALYSIS
 1. MEMBRANE ANALYSIS

In the membrane analysis the member are assumed to act independent of the others.

Hence individually all components of the structure are designed.

The design of membrane analysis is carried as follows,

Consider,
M30 concrete
HYSD Fe 415 bars
Intensity of wind pressure $=1200 \mathrm{~N} / \mathrm{m}^{2}$
Thickness $=100 \mathrm{~mm}$
Bearing capacity $=180 \mathrm{KN} / \mathrm{m}^{2}$
Let diameter of ring beam $=B_{2}=D_{0}=10 \mathrm{~m}$
Let the diameter of cylindrical portion $\mathrm{D}=15 \mathrm{~m}$
$\mathrm{R}=7.5 \mathrm{~m}$
$\mathrm{h}=$ height of cylindrical
Rise $\mathrm{h}_{1}=1.8 \mathrm{~m}$
Rise $\mathrm{h}_{2}=1.6 \mathrm{~m}$
Radius R_{2} of bottom dome is given;
$\mathrm{h} \times\left(2 \mathrm{R}_{2}-\mathrm{h}_{2}\right)=5^{2}$
$1.6 \times\left(2 \mathrm{R}_{2}-1.6\right)=5^{2}$
$\mathrm{R}_{2}=8.61 \mathrm{~m}$

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

In general the volume of water stored is given by;
$V=\frac{\pi}{4} D^{2} h+\frac{\pi}{12} h_{o}\left(D^{2}+D_{o}^{2}+D h_{o}\right)-\frac{\pi}{3} h_{2}^{2}\left(3 R_{2}-\right.$
h_{2})

$$
\begin{gathered}
\sin \varphi_{2}=0.5807 \\
\varphi=35.5
\end{gathered}
$$

Required volume $=1000 \mathrm{~m}^{3}$
$\therefore \mathrm{h}=4.619 \mathrm{~m}$
Allowing for free board; $\mathrm{h}=5 \mathrm{~m}$
For top dome, the radius R_{1};
By property of circle,
$\mathrm{h}_{1} \times\left(2 \mathrm{R}-\mathrm{h}_{1}\right)=7.5^{2}$
$\mathrm{R}_{1}=16.525$

$$
\begin{gathered}
\sin \varphi_{1}=0.453 \\
\varphi=26.9914
\end{gathered}
$$

2. DESIGN OF TOP DOME

$\mathrm{R}_{1}=16.525 \mathrm{~m} \sin \varphi_{1}=0.453 \cos \varphi_{1}=0.8910$
Let thickness $\mathrm{t}_{1}=100 \mathrm{~mm}=0.1 \mathrm{~m}$
Taking Live load $=1.5 \mathrm{KN} / \mathrm{m}^{2}$
Pressure on top of dome $\mathrm{p}=0.1 \times 25000+1500$

$$
=4000 \mathrm{~N} / \mathrm{m}^{2}
$$

Meridional thrust at edge

$$
\begin{aligned}
& \mathrm{T}_{1}=\frac{\mathrm{pR}_{1}}{1+\cos \varphi_{1}} \\
& \mathrm{~T}_{1}=34599.857 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Maximum hoop stress occurs at the center
$\frac{\mathrm{pR}_{1}}{\mathrm{t}_{1}}=\frac{4000 \times 16.525}{0.1} \times \frac{1}{2}=330500 \mathrm{~N} / \mathrm{m}^{2}$

$$
=0.33^{\mathrm{N}} / \mathrm{mm}^{2} \quad(\mathrm{safe})
$$

Since stresses are within safe limit, provide nominal reinforcement @ 0.35\%
$A_{s}=\frac{0.35}{100} \times 100 \times 1000=350 \mathrm{~mm}^{2}$
$\left(\mathrm{A}_{\mathrm{st}}=100 \mathrm{~mm}\right)$ using $8 \mathrm{~mm} \emptyset$ bars $\mathrm{A}_{\emptyset}=50 \mathrm{~mm}^{2}$
Spacing $=\frac{1000 \times 50}{350}=142.85 \mathrm{~mm} \cong 140 \mathrm{~mm}$
Hence, Provide \# 8mm Ø @ 140 mm C/c

3. DESIGN OF TOP RING BEAM B1

Horizontal component of T is
$\mathrm{P}_{1}=\mathrm{T}_{1} \cos \emptyset_{1}=300831.02763 \mathrm{~N} / \mathrm{m}$
Total Tension tending to rupture the beam $=\frac{\mathrm{P}_{1} \times \mathrm{D}}{2}=231232.71 \mathrm{~N} / \mathrm{m}$
Permissible Stress in HYSD $=130 \mathrm{~N} / \mathrm{mm}^{2}$
Ash $=\frac{231232.7}{130}=1778.71 \mathrm{~mm}^{2}$

No. of $20 \mathrm{~mm} \emptyset$ bars $=\frac{1541.5}{380.13}=6$
Actual $\mathrm{A}_{\text {sh }}$ provided $=341.16 \times 6=1884.95 \mathrm{~mm}^{2}$
$\frac{\text { Tension causing rupture }}{[\mathrm{A}+(9.333-1) \times \mathrm{Ash}]} \leq 1.3 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\frac{231232.7072}{[\mathrm{~A}+8.333 \times 1884.95]}=1.3
$$

$\mathrm{A}=162163.45 \mathrm{~mm}^{2}$
Provide ring beam of 400 mm depth and 420 mm width. Tie the $20 \mathrm{~mm} \emptyset$ ring by 60 mm diameter nominal stirrups @ 200 mm c/c
$A_{\text {prov }}=400 \times 420=168000 \mathrm{~mm}^{2} \therefore$ OK

4. DESIGN OF CYLINDRICAL WALL

In the membrane analysis, the tank wall is assumed to be free at top and bottom.

Maximum hoop tension occurs at bottom of the wall $\rho=\mathrm{p} \frac{\mathrm{D}}{2}=\frac{\mathrm{whD}}{2}=367500 \mathrm{~N} / \mathrm{m}$ height
Provide rings on both the faces
On each face $=1413.461 \mathrm{~mm}^{2}$
Spacing of $14 \mathrm{~mm} \emptyset$ rings $=\frac{1000 \times 14^{2} \times \frac{\pi}{4}}{1413}=108.9 \mathrm{~mm}$
Provide $14 \mathrm{~mm} \varnothing$ rings at 100 mm spacing C / c at bottom

This spacing can increase at the top
Actual Ash provide $=\frac{1000 \times 14^{2} \times \frac{\pi}{4}}{100}=1539.3 \mathrm{~mm}^{2}$
On each face permitting $1.2 \mathrm{~N} / \mathrm{mm}^{2}$ stress on composite section
$\frac{367500}{1000 t+[9.33-1] \times 1539.3 \times 2}=1.2$
$\mathrm{t}=254.94 \mathrm{~mm}=25.4 \mathrm{~cm}$
Minimum thickness $=(3 \mathrm{H}+5) \mathrm{cm}(\mathrm{H}=5 \mathrm{~m})$
$3 \times 5+5=20 \mathrm{~cm}$
However provide $\mathrm{t}=300 \mathrm{~mm}$ at bottom and taper it to 200 mm at top

Average $\mathrm{t}=\frac{300+200}{2}=250 \mathrm{~mm}$
Percent distribution steel
$=0.24 \%$ of surface zone of wall
As tank dimensions are not more than 15 m
$\therefore 0.24 \%$ of surface zone
Therefore, $\mathrm{A}_{\mathrm{sh}}=325 \mathrm{~mm}^{2}$
Let area of steel on each face be $325 \mathrm{~mm}^{2}$
$A_{\text {sh }}=650 \mathrm{~mm}^{2}$
Spacing of $8 \mathrm{~mm} \emptyset$ bars $=\frac{1000 \times 50.3}{325}=155 \mathrm{~mm}$
Provide $8 \mathrm{~mm} \emptyset$ bars at 150 mm c/c on faces keep a clear cover of 25 mm

To resist hoop tension at 2 m below top
$\mathrm{A}_{\text {sh }}=\frac{2}{5} \times 2826.93=1130.7692 \mathrm{~mm}^{2}$
Therefore, spacing of $14 \mathrm{~mm} \emptyset$ rings

$$
\begin{aligned}
& =\frac{1000 \times \frac{\pi}{4} \times 14^{2}}{\frac{1130.7692}{2}} \\
& =136.1357 \mathrm{~mm} \times 2=272.27 \mathrm{~mm}
\end{aligned}
$$

Hence provide the rings at $270 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ in top 2 m height ($1-2 \mathrm{~m}$)

At 3 m below top
$\mathrm{A}_{\text {sh }}=1696.1538 \mathrm{~mm}^{2}$

$$
\begin{aligned}
\text { Spacing of } 12 \mathrm{~mm} \emptyset \text { ring } & =\frac{1000 \times \frac{\pi}{4} \times 14^{2}}{\frac{1696.1538}{2}}=181.81 \mathrm{~mm} \\
& =180 \mathrm{~mm}
\end{aligned}
$$

Hence provide the rings at $180 \mathrm{~mm} / \mathrm{c}$ in next 1 m height ($2-3 \mathrm{~m}$)
At 4 m below the top

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{sh}}=\frac{4}{5} \times 2826.923=2261.93 \mathrm{~mm} \\
& \mathrm{~S}_{\mathrm{v}}=\frac{1000 \times \frac{\pi}{4} \times 14^{2}}{\frac{2261.93}{2}}=136.1357 \mathrm{~mm}
\end{aligned}
$$

Provide $14 \mathrm{~mm} \emptyset$ ring at 130 mm at next 1 m height (3-4m)

In last 1 m height provide rings of $100 \mathrm{~mm} / \mathrm{c}^{\mathrm{c}}$ as found earlier (4-5m)

5. DESIGN OF RING BEAM B3

Ring beam B3 connects the tank wall conical dome. The vertical load at the junction of the wall with conical dome is transferred to ring beam B3 by meriodional thrust in conical dome. The horizontal component of thrust cause hoop tension at the junction. Ring beam takes up this hoop tension.

In our design w consist of per running meter
(i) Load of top dome $=T_{1} \sin \emptyset_{1}=15703.41152 \mathrm{~N}$
(ii) Load due to ring beam B_{1}
$=0.4 \times(0.42-0.2) \times 1 \times 25000$
Depth $=0.4 \mathrm{~m}$
Breadth $=2400 \mathrm{~N} / \mathrm{m}$
(iii) Load due to tank wall $=5 \times\left(\frac{0.2+0.5}{2}\right) \times$
$1 \times 25000=31250 \mathrm{~N} / \mathrm{m}$
(iv) Self weight of beam $B_{3}(1 \mathrm{~m} \times 0.6 \mathrm{~m})$
$((1-0.3) \times 0.6) \times 25000=10500 \mathrm{~N} / \mathrm{m}$
Therefore,
Total $\mathrm{W}=59853.41 \mathrm{~N} / \mathrm{m}$
Inclination of conical dome wall with vertical $=$ $\emptyset_{0}=45^{0}$
$\sin \emptyset_{0}=\cos \emptyset_{0}=\frac{1}{\sqrt{2}} ; \tan \emptyset=1 \mathrm{~s}$
$\mathrm{P}_{\mathrm{T}}=\tan \emptyset=59853.41152 \times \tan 45=59853.41 \mathrm{~N} / \mathrm{m}$
$\mathrm{P}_{\mathrm{w}}=($ water pressure $) \times$ area $=$ w.h $\times\left(\mathrm{d}_{3} \times 1\right)$
$=29400 \mathrm{~N} / \mathrm{m}$

$$
P_{3}=\left(P_{T}+P_{w}\right) \frac{D}{2}
$$

$$
=669400.58 \mathrm{~N}
$$

Hoop stress developed (tensile) resisted entirely in steel hoops. The area of which is
$\mathrm{A}_{\mathrm{sh}}=5149.235 \mathrm{~mm}^{2}$
No. of $30 \mathrm{~mm} \emptyset$ bars $=\frac{5073.08}{\frac{\pi}{4} \times 30^{2}}=7.28=8$ bars
Hence provide 8 rings of $30 \mathrm{~mm} \emptyset$ bars.
Actual $\mathrm{A}_{\text {sh }}=5654.87 \mathrm{~mm}^{2}$
Stress in equivalent section $=$
$\frac{\text { force }}{\text { area of equivalent section of concrete }}$

Area of equivalent section of concrete $=$
$A_{c}+m . A_{\text {sh }}-A_{\text {sh }}=647122.032 \mathrm{~mm}^{2}$
Stress in equivalent section $=\frac{669400.58}{1000 \times 600+8.333 \times 5654.87}=$ $1.0344 \mathrm{~N} / \mathrm{mm}^{2}<1.3$ Hence safe.

The $8 \mathrm{~mm} \varnothing$ distribution bars (verticals bars) provided in the wall at $150 \mathrm{~mm} \mathrm{c} / \mathrm{c}$ should be taken around the above rings at act as stirrups.

6. DESIGN OF BOTTOM DOME

Bottom dome develops compressive stresses both meridionally as well as hoops due to weight of water supported by it and also due to its own weight.
$\mathrm{R} 2=8.61 \mathrm{~m} \quad \sin \emptyset_{2}=0.5807 \cos \emptyset=0.8141$
Let, H0 be the total depth of water above the edges of dome

The weight of water above the surface of dome
$\mathrm{W} 0=\left[\frac{\pi}{4} \mathrm{D}_{0}^{2} \mathrm{H}_{0}-\frac{\pi \mathrm{h}_{2}^{2}}{3}\left(3 \mathrm{R}_{2}-\mathrm{h}_{2}\right)\right] \times 20$
Total surface area of dome $=2 \pi R_{2} h_{2}$
Self-weight of dome $=2 \pi R_{2} h_{2} t_{2} \times r_{c}$
$\mathrm{t}_{2} \rightarrow$ Thickness of bottom dome
Total load WT $=\mathrm{W} 0+2 \pi \mathrm{R}_{2} \mathrm{~h}_{2} \mathrm{t}_{2} \times \mathrm{r}_{\mathrm{c}}$
$\left(\pi \mathrm{D} \times \mathrm{T}_{2}\right) \sin \emptyset_{2}=$ Total load (WT)
T2 \rightarrow Thrust per meter
$\mathrm{T} 2 \times \pi \mathrm{D} \rightarrow$ Total thrust force
$(\sin \varnothing) \mathrm{T}_{2}=\frac{\mathrm{W}_{\mathrm{T}}}{\pi \mathrm{D}}$
$\mathrm{T} 2=\frac{\mathrm{W}_{\mathrm{T}}}{\pi \mathrm{D} \sin \varnothing_{2}}$
Intensity of load (p2) $=\frac{\mathrm{W}_{\mathrm{T}}}{\text { Surface area of dome }}$
$\mathrm{P} 2=\frac{\mathrm{W}_{\mathrm{T}}}{2 \pi \mathrm{R}_{2} \mathrm{~h}_{2}}$
We know,

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

In spherical portions, max hoop stress (derived earlier) $\frac{\text { pressure } \times \text { radius }}{2 \times \text { thicness }}=\frac{\mathrm{P} \times \mathrm{R}}{2 \mathrm{t}}$

Hence, pressure $p=\frac{p_{2} \times R_{2}}{2 t_{2}}$
Weight of water W0 on the dome is
$\mathrm{W} 0=\left(\frac{\pi}{4} \times 10^{2} \times 7-\frac{\pi}{3} \times 1.6^{2}(3 \times 8.61-\right.$
1.6)) $\times 9800=4751259 \mathrm{~N}$

Let the Thickness of bottom dome be 250 mm
Self-weight $=2 \pi R_{2} h_{2} t_{2} \times 2500$
$=54098.225 \mathrm{~N}$
Total weight $=529224100 \mathrm{~N}$
(T2) Meridional Thrust $=\frac{\mathrm{W}_{\mathrm{T}}}{\pi \mathrm{D}_{0} \sin \emptyset_{0}}$

$$
=290093 \mathrm{~N} / \mathrm{m}
$$

Intensity of load per unit area $=\frac{5292241}{2 \pi \times 8.61 \times 1.6}$

$$
=61142 \mathrm{~N} / \mathrm{m}
$$

Meriodional Stress $=\frac{290093}{250 \times 100}=1.16 \mathrm{~N} / \mathrm{mm} 2($ safe $)$
Intensity of Pressure (load per unit area) = $\frac{W_{T}}{\text { surface area }}=\frac{W_{T}}{2 \pi R_{2} h_{2}}$
$=61142 \mathrm{~N} / \mathrm{m} 2$

Max Hoop Stress $\rightarrow \frac{\mathrm{p}_{2 \times \mathrm{R}_{2}}}{2 \mathrm{t}_{2}}=1052860 \mathrm{~N} / \mathrm{m}^{2}$
$=1.0528 \mathrm{~N} / \mathrm{mm}^{2}<2.0$ (forM30) (safe)
Area of Steel \rightarrow Bottom dome provided 0.24% (min for HYSD) of steel in both the faces (As per IS 3370-PART-2)

As in each face (thickness $=\frac{0.25}{2}=0.125 \mathrm{~m}$)
As $=\frac{0.24}{100} \times \frac{250}{2} \times 100$

$$
=300 \mathrm{~mm} 2 \text { in each face }
$$

Therefore, Total As $=2 \times 300=600 \mathrm{~mm} 2$
(600 mm 2 in each direction and 300 mm 2 in each face)

$$
\begin{aligned}
\text { Spacing of \# } 10 \mathrm{~mm} \emptyset \text { bars } & =\frac{1000 \times \frac{\pi}{4} \times 10^{2}}{600} \\
& =130.89 \mathrm{~mm}
\end{aligned}
$$

$\cong 130 \mathrm{~mm}$
Provide \# 10mm @ $130 \mathrm{~mm} \mathrm{C} / \mathrm{c}$ in both directions. Also provide $16 \mathrm{~mm} \emptyset$ meriodinal bar @ 100 mm c/c near water face for 1 m length to take of continuity effect. The thickness of dome maybe increased from 250 mm o 280 mm gradually in 1 m length.

7. DESIGN OF BOTTOM CIRCULAR BEAM (B2)

The ring beam B_{2} receives an inward inclined thrust T_{0} from conical dome and an outward thrust T_{2} from bottom dome. The horizontal components are
$\mathrm{T}_{0} \sin \emptyset_{0}$ and $\mathrm{T}_{2} \cos \emptyset_{2}$
They are acting in opposite direction Therefore, net horizontal force on B_{2}

$$
\mathrm{P}=\mathrm{T}_{0} \sin \emptyset_{0}-\mathrm{T}_{2} \cos \emptyset_{2}
$$

$\mathrm{T}_{0} \sin \emptyset_{0}<\mathrm{T}_{2} \cos \emptyset_{2}$
The dimensions of tank should be so adjusted that either P is zero or P is compression. The hoop force is given by

$$
\mathrm{P}_{\mathrm{H}}=\mathrm{P} \times \frac{\mathrm{P}_{\mathrm{o}}}{2}
$$

If b_{2} is width and d_{2} is depth of ring beam, the stress is given by;
$\mathrm{P}_{\mathrm{H}}=\mathrm{P} \times \frac{\mathrm{P}_{\mathrm{o}}}{2} \times \frac{1}{\mathrm{bd}}$
The vertical load per unit length is given by;
$\mathrm{P}_{\mathrm{v}}=\mathrm{T}_{0} \cos \emptyset_{0}+\mathrm{T}_{2} \sin \emptyset_{2}$
Inward thrust from conical dome $=\mathrm{T}_{0} \sin \emptyset_{0}$
$401774.5443 \mathrm{~N} / \mathrm{m}$
Outward thrust from bottom dome $=\mathrm{T}_{2} \cos \emptyset_{2}$

$$
=236165 \mathrm{~N} / \mathrm{m}
$$

Net inward thrust $=401774.5443-236165=$ $165609.5443 \mathrm{~N} / \mathrm{m}$

Hoop compression in beam $=165609.5443 \times \frac{10}{2}$ $=828047.72$
Assuming the size of the beam to be $600 \mathrm{~mm} \times 1200$ mm
Hoop stress $=\frac{828047.72}{600 \times 1200}=1.15 \mathrm{~N} / \mathrm{mm}^{2}($ safe $)$
Vertical load on beam, per meter run $=\mathrm{T}_{0} \cos \emptyset_{0}+$ $\mathrm{T}_{2} \sin \emptyset_{2}=489970.8576 \mathrm{~N}$

Alternately vertical load $=\mathrm{W}_{2}+\frac{\mathrm{w}_{\mathrm{T}}}{\pi \mathrm{D}_{\mathrm{o}}}=495188.43 \mathrm{~N}$
Self wt $=0.6 \times 1.2 \times 1 \times 25000=18000 \mathrm{~N} / \mathrm{m}$
Therefore, the load on beam $=w=507970 \mathrm{~N} / \mathrm{m}$
Let us provide the beam on 8 equally spaced column at a mean diameter of 10 m .

Mean radius of curved beams $\mathrm{R}=5 \mathrm{~m}$
$2 \theta=45=\frac{\pi}{4}$

$$
\theta=22.5=\frac{\pi}{8}
$$

From table;
$\mathrm{C}_{1}=0.066$
$\mathrm{C}_{2}=0.030$
$\mathrm{C}_{3}=0.005$

$$
\begin{aligned}
& \emptyset_{\mathrm{m}}=9.5^{\circ} \\
& \mathrm{w} \mathrm{R}^{2}(2 \theta)=5077970 \times 5^{2} \times \frac{\pi}{4} \\
& =9973967.627 \mathrm{Nm}
\end{aligned}
$$

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

Maximum-ve B.M at support $=\mathrm{M}_{\mathrm{o}}=\mathrm{C}_{1} \mathrm{w} \mathrm{R}^{2}(2 \theta)$
$=658281.8654 \mathrm{Nm}$
Maximum +ve B.M at support $=\mathrm{M}_{2}=\mathrm{C}_{2} \mathrm{w} \mathrm{R}^{2}(2 \theta)$
$=299219.03 \mathrm{Nm}$
Maximum torsional moment $M_{m}^{\prime}=C_{3} w R^{2}(2 \theta)$
$=49869.8 \mathrm{Nm}$
For M30 concrete $\sigma_{\mathrm{cbc}}=10 \mathrm{~N} / \mathrm{mm}^{2}$
For HYSD bars $\quad \sigma_{\text {st }}=130 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{k}=0.41791 \mathrm{j}=0.86069 \mathrm{R}=1.79845$
Required effective depth $=\sqrt{\frac{65824.86 \times 1000}{600}}=781.05$ mm

Howeverkeep total depth $=1200 \mathrm{~mm}$ from shear point of new

Let $\mathrm{d}=1140 \mathrm{~mm}$
Maximum shear force at support $\mathrm{F}_{\mathrm{o}}=\mathrm{w} \mathrm{R} \theta$
=997396.7627 N
S.F at any point is given by $\mathrm{F}=\mathrm{w} \mathrm{R}(\theta-\emptyset)$

At $\emptyset=\emptyset_{\mathrm{m}} ; F=576273.685 \mathrm{~N}$
BM at point of maximum torsional moment $\left(\varnothing=\emptyset_{\mathrm{m}}=9.5^{\circ}\right)$ is given by;
$M_{o}=w R^{2}(\theta \sin \emptyset+\theta \cot \theta \cos \emptyset-1)$
$=1632.83 \mathrm{~N}-\mathrm{m}$ (sagging)
$=1632.83 \mathrm{~N}-\mathrm{m}$ (hogging)
The torsional moment at any point is given by
$\mathrm{M}_{\mathrm{q}}^{\mathrm{t}}=\mathrm{w} \mathrm{R}^{2}(\theta \cos \emptyset-\theta \cot \theta \sin \emptyset-(\theta-\emptyset))$
At support $\varnothing=0$;
$\mathrm{M}_{\mathrm{o}}^{\mathrm{t}}=\mathrm{w} \mathrm{R}^{2}(\theta-\emptyset)$
At midspan $\theta=\varnothing=22.5=\frac{\pi}{8}$
$\mathrm{M}_{\mathrm{e}}^{\mathrm{t}}=\mathrm{w} \mathrm{R}^{2}\left(\theta \cos \emptyset-\theta \frac{\sin \phi}{\sin \varnothing} \cos \emptyset\right)$
We have following combination of BM and torsional moment;
(a) At the support
$\mathrm{M}_{\mathrm{o}}=1632.83 \mathrm{~N}-\mathrm{m}$ (hogging); $\mathrm{M}_{\mathrm{o}}^{\mathrm{t}}=0$
(b) At mid-span
$\mathrm{M}_{\mathrm{e}}=299221.03 \mathrm{Nm}$ (sagging); $\mathrm{M}_{\mathrm{o}}^{\mathrm{t}}=0$
(c) At point of maximum torsion $\left(\emptyset=\emptyset_{\mathrm{m}}=9.5^{\circ}\right)$
$\mathrm{M}_{\mathrm{o}}=1632.83 \mathrm{Nm}$ (hogging); $\mathrm{M}_{\mathrm{m}}^{\mathrm{t}}=49869.8 \mathrm{~N}-\mathrm{m}$
Main and longitudinal reinforcement
(d) Section at point of maximum torsion
$\mathrm{T}=\mathrm{M}_{\text {max }}^{\mathrm{t}}=49869.8 \mathrm{Nm} ; \mathrm{M}_{\mathrm{Q}}=\mathrm{M}=1632.8 \mathrm{~N}-\mathrm{m}$
As per IS 456-2000

$$
M_{e 1}=M+M_{T}
$$

$\mathrm{M}_{\mathrm{T}}=88005.26 \mathrm{Nm}$
$M_{e 1}=1632.8+88005.26=89638.06 \mathrm{Nm}$
$\mathrm{A}_{\mathrm{st} 1}=\frac{\mathrm{M}_{\mathrm{eq}}}{\sigma_{\mathrm{st}} \times \mathrm{j} \times \mathrm{d}}=690.63 \mathrm{~mm}^{2}$
No of $30 \mathrm{~mm} \emptyset$ bars $=\frac{589.474}{\frac{\pi}{4} \times 30^{2}} \approx 1$

Provide a minimum of 2 bars
Since $M<M_{T}$

$$
\begin{aligned}
& \quad \mathrm{M}_{\mathrm{e} 1}=\mathrm{M}_{\mathrm{T}}-\mathrm{M} \\
& =88005.26-1632.8 \\
& =86372.46 \mathrm{Nm}
\end{aligned}
$$

$\mathrm{A}_{\mathrm{st} 2}=\frac{86372.46}{130 \times 0.874 \times 1160}=665.76 \mathrm{~mm}^{2}$
No of $25 \mathrm{~mm} \emptyset$ bars $=\frac{665.76}{\frac{\pi}{4} \times 25^{2}}=1.36 \approx 2$
Provide a minimum of 2 bars
Thus at point of maximum torsion.
Provide 2-15 mm \emptyset bars each at top and bottom
(b) Section at maximum hogging BM
$\mathrm{M}_{\mathrm{o}}=\frac{65828.863 \times 1000}{130 \times 0.874 \times 1160}=5071.869 \mathrm{~N}-\mathrm{m}$
No of $30 \mathrm{~mm} \emptyset$ bars $=\frac{5071}{\frac{\pi}{4} \times 30^{2}} \approx 8$ bars
Hence provide 5 nos $30 \mathrm{~mm} \emptyset$ bars in one layer and 3 nos $30 \mathrm{~mm} \emptyset$ bars in the second layer.

They will be provided at top of the section, near support.
(c) Section at maximum sagging BM at mid-span
$\mathrm{M}_{\mathrm{o}}=\frac{299219 \times 1000}{130 \times 0.874 \times 1160}=2305.372 \mathrm{~N}-\mathrm{m}$
No of $30 \mathrm{~mm} \emptyset$ bars $=\frac{2305}{\frac{\pi}{4} \times 30^{2}} \approx 4$ bars
Hence the scheme of reinforcement will be as follows

At the support provide 5 nos $30 \mathrm{~mm} \emptyset$ bars in one layer and 3 nos $30 \mathrm{~mm} \emptyset$ bars in the second layer.

Continue upto section of maximum torsion i.e. at $\emptyset_{\mathrm{m}}=9.5^{\circ}=0.116 \mathrm{rad}$
at distance $=\mathrm{R} \emptyset_{\mathrm{m}}=5 \times 0.116=0.83 \mathrm{~m}$
$\mathrm{L}_{\mathrm{d}}=52 \emptyset=1560 \mathrm{~mm}$ from support
At this point discontinuous 4 bars while continue remaining 4 bars

Similarly provide 4 bars of $25 \mathrm{~mm} \varnothing$ at the bottom throughout the length.

8. TRANSVERSE REINFORCEMENT

(a) At the point of maximum torsional moment

At the point of maximum torsion $\mathrm{V}=576273.66 \mathrm{~N}$
$\mathrm{V}_{\mathrm{e}}=\mathrm{V}+1.6 \frac{\mathrm{~T}}{\mathrm{~b}}$
$=576273.66+\frac{1.6 \times 49869.5}{0.6}=709259.78 \mathrm{~N}$
$\mathrm{T}_{\mathrm{ve}}=\frac{\mathrm{Ve}}{\mathrm{bd}}=1.019 \mathrm{~N} / \mathrm{mm}^{2}$
This is less than $\mathrm{t}_{\mathrm{cmax}}$
$\frac{100 \mathrm{~A}}{\mathrm{bd}}=0.406$
$\mathrm{T}_{\mathrm{c}}=0.35 \mathrm{~N} / \mathrm{mm}^{2}$

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

Since $\mathrm{T}_{\mathrm{c}}<\mathrm{T}_{\mathrm{ve}}$ shear Reinforcement is necessary
The area of cross section A_{sv} of the stirrups is given by

$$
\frac{\mathrm{A}_{\mathrm{sv}} \sigma_{\mathrm{sv}} \mathrm{~d}_{1}}{\frac{\mathrm{~V}}{2.5}+\frac{\mathrm{T}}{\mathrm{~b}_{1}}}=s_{v}
$$

$\mathrm{d}_{1}=1200-40 \times 2-25=1095$
$\mathrm{b}_{1}=600-40 \times 2-25=495$

$$
\begin{gathered}
\frac{\mathrm{A}_{\mathrm{sv}}}{\mathrm{~S}_{\mathrm{v}}}=1.404 \\
\frac{\mathrm{~A}_{\mathrm{sv}}}{\mathrm{~s}_{\mathrm{v}}} \geq \frac{\mathrm{Tve}-\mathrm{Tc}}{\sigma_{\mathrm{sv}}}
\end{gathered}
$$

$=2.676$
Hence $\frac{A_{s v}}{s_{v}}=2.676$
Using 12 mm diameter 4legged stirrups

$$
\mathrm{A}_{\mathrm{sv}}=4 \times 113=452 \mathrm{~mm}^{2}
$$

Or

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{sv}}=\frac{452}{2.676} \\
& =168 . \mathrm{mm}^{2}
\end{aligned}
$$

However the Spacing should not exceed least of Spacing should not exceed $x_{1}, 300, \frac{x_{1}+y_{1}}{4}$

$$
\begin{gathered}
x_{1}=495+25+12=532 \mathrm{~mm} \\
\mathrm{y}_{1}=1095+25+12=1032 \mathrm{~mm} \\
\frac{\mathrm{x}_{1}+\mathrm{y}_{1}}{4}=391 \mathrm{~mm}
\end{gathered}
$$

Hence provide 12 mm diameter stirrups @ 160 mm c/c
(b) At the point of maximum shear (supports)

At supports $\mathrm{F}_{\mathrm{o}}=997396.7629 \mathrm{~N}$
$\mathrm{T}_{\mathrm{c}}=0.38$
$\mathrm{T}_{\mathrm{c}}<\mathrm{T}_{\mathrm{v}}$
$\mathrm{V}_{\mathrm{c}}=0.38 \times 600 \times 1600=264480 \mathrm{~N}$
$\mathrm{V}_{\mathrm{s}}=\mathrm{F}_{\mathrm{o}}-\mathrm{V}_{\mathrm{c}}=732916.762 \mathrm{~N}$
The Spacing of 10 mm diameter 4 legged Stirrups having $\mathrm{A}_{\mathrm{sv}}=314 \mathrm{~mm}^{2}$

$$
\frac{A_{s v} \sigma_{\text {sv }} d_{1}}{V_{s}}=s_{v}
$$

$=74.546 \mathrm{~mm} \ldots \ldots$. is to small
Hence use 12 mm diameter 4 legged Stirrups having Asv $=452.39 \mathrm{~mm}^{2}$
$S_{v}=\frac{150 \times 452.39 \times 1160}{732916.762}=107 \mathrm{~mm}$
Provide spacing 100 mm
(c)At mid-span SF is zero hence provide nominal shear reinforcement given by

$$
\frac{\mathrm{A}_{\mathrm{sv}}}{\mathrm{bs}_{\mathrm{v}}} \geq \frac{0.4}{\mathrm{f}_{\mathrm{y}}}
$$

$$
\frac{\mathrm{A}_{\mathrm{sv}}}{\mathrm{~s}_{\mathrm{v}}}=0.578
$$

Choosing 10 mm diameter 4 legged stirrups $A_{\mathrm{sv}}=314 \mathrm{~mm}^{2}$

$$
\mathrm{s}_{\mathrm{v}}=\frac{314}{0.578}=543 \mathrm{~mm}
$$

Maximum permissible spacing $=0.75 \mathrm{~d}=0.75 \times 1160$

$$
=870 \mathrm{~mm}
$$

Or 300 mm
Hence provide 10 mm 4 legged stirrups @ 300 mm c / c

Side face reinforcement
Since Depth $>450 \mathrm{~mm}$ \&Torsional moment present
Provide side face reinforcement of 0.1%
$\mathrm{A}_{\mathrm{sl}}=\frac{0.1}{100} \times(600 \times 1200)=720 \mathrm{~mm}^{2}$
Provide $3-16 \mathrm{~mm}$ diameter bars on each face having $A_{s l}=6 \times 201=1206 \mathrm{~mm}^{2}$

9. DESIGN OF COLUMN

(a) Vertical loads on column

1. Weight of water $=W_{w}+W_{0}=10459794.66 \mathrm{~N}$
2. Weight of tank $=$ (Weight of top dome + cylindrical walls) + (Weight of conical dome) + (bottom dome) + (Bottom ring beam)

Weight of top dome + cylindrical wall $=2820525.5 \mathrm{~N}$
Weight of conical dome $=1571287.201 \mathrm{~N}$
Weight of bottom dome $=540982 \mathrm{~N}$
Weight of bottom ring beam =
$18000 \times \pi \times 10=565487 \mathrm{~N}$
Total weight on the tank $=5498281 \mathrm{~N}$
Total superimposed load = $5498281+10459794.66=15958075 \mathrm{~N}$

Load per column $=\frac{15958075}{8}=1994759.375 \mathrm{~N}$
Let the column be 400 mm diameter $=\frac{\pi}{4} \times 0.7^{2} \times$ $4200=9620 \mathrm{~N}$

Let the brace be of $300 \mathrm{~mm} \times 600 \mathrm{~mm}$
Length of each brace (L)
$\mathrm{L}=\mathrm{R}$,
$\mathrm{R} \frac{\sin =\frac{\pi}{n}}{\cos =\frac{\pi}{n}}=3.83 \mathrm{~m}$
Clear length of each brace $=3.83-0.7=3.13 \mathrm{~m}$
Weight of each brace $=0.3 \times 0.6 \times 3.13 \times 2800=$ 14085 N
Total height of structure $=6+1.2+2+5+1.9$

$$
=26.1 \mathrm{~m}
$$

Terrain category 2
Location: near Chennai
$\mathrm{V}_{\mathrm{b}}=50 \mathrm{~m} / \mathrm{s}$
$\mathrm{K}=0.9$ (Table 1) IS 875 part 3
Mean probable design life $=25$ years

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

Basic Wind speed $\left(\mathrm{V}_{\mathrm{b}}\right)=50 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{k}_{1}=0.9
$$

Table No 2. k_{2}
Terrain category 2
Height $=26.1 \mathrm{~m}$
$20 \quad 1.07$
$26.1 \quad \mathrm{k}_{2}$
$30 \quad 1.12$
$\mathrm{K}_{2}=1.101$
$\mathrm{k}_{3}=1$ (Plain topography)
$\mathrm{V}_{\mathrm{z}}=\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3} \mathrm{~V}_{\mathrm{b}}^{2}$
$\begin{aligned} & \mathrm{V}_{2} \approx 50 \\ & \mathrm{P}_{2}=0.6 \mathrm{~V}_{\mathrm{z}}^{2}=1500^{N} / \mathrm{m}^{2}\end{aligned}$
Let us take a shape factor of 0.7 for circular section in plan

Wind load on tank dome and ring beam
Wind load $=(5 \times 15.4)+\left(15.2 \times \frac{2}{3} \times 1.9\right)+(2 \times$ $13.2)+(10.6 \times 1.23)+(1500 \times 0.7)=142142 \mathrm{~N}$.
This may be assumed to act at about 5.7 m above bottom of ring beam

It acts at C.G of projected area. In this case it is about 5.7 m from bottom of ring beam B_{2}

Wind load on each panel of 4 m height $=$ $(4 \times 0.7 \times 8) \times 1500 \times 0.7+(0.6 \times 10.6) \times 1500$ $=33060 \mathrm{~N}$

Wind load at top panel $=\frac{1}{2} \times 23520=11760 \mathrm{~N}$
The points of contraflexure
$\mathrm{o}_{1}, \mathrm{o}_{2}, \mathrm{O}_{3}$ and o_{4} are assumed to be at mid height of each panel
The shear force Q_{w} and moments M_{w} are due to wind at these planes are given below

Level	$\mathrm{Q}_{\mathrm{w}}(\mathrm{N})$	$\mathrm{M}_{\mathrm{w}}(\mathrm{N} / \mathrm{m})$
o_{4}	$142142+1176$	$142142 \times 7.7+117$
	$0=153902$	$60 \times 2=1118013.4$
o_{3}	$142142+1176$	$142142 \times 11.7+11$
	$0+33060=18696$	$760 \times 6+33060 \times 2=1$
	2	799741.4
o_{2}	$142142+1176$	$142142 \times 15.7+11$
	$0+33060+33060$	$760 \times 10+33060 \times 8=$
	$=220022$	2613709.4
o_{1}	$142142+1176$	$142142 \times 20.2+11$
	$0+33060+33060$	$760 \times 14.5+33060 \times($
	$+33060=253082$	$10.5-$
		$6.5+2.5)=3256678.4$

The axial thrust $V_{\text {max }}=\frac{4 M_{w}}{n V_{0}}$ ($\mathrm{n}=8$ columns)
$=0.05 \mathrm{M}_{\mathrm{w}}$ in the farther leeward column, the shear force
$S_{\text {max }}=\frac{2 Q_{w}}{n}=0.25 M_{w}$ in the farthest column, leeward shear force $\left(S_{\text {max }}\right)$
In column on bending axis at crown of the above
levels and bending moment $\mathrm{M}=\mathrm{S}_{\text {max }} \times \frac{\mathrm{h}}{2}$ in column is tabulated

Table Vi - Maximum Shear And Moment Stress

$\mathrm{el}^{\text {Lev }}$	$\mathrm{V}_{\text {max }}$	$\mathrm{S}_{\text {max }}$	$\mathrm{m}^{\mathrm{M}(\mathrm{~N}}$
O_{4}	55900	${ }_{5.5} 3847$	7695
O_{3}	789987.0	$0.5{ }^{4674}$	19348
O_{2}	$5^{130685 .}$	5.5	11^{1100}
O_{1}	$92^{162833 .}$	$\begin{aligned} & 6327 \\ & 0.5 \\ & \hline \end{aligned}$	41^{1265}

The critical combination for various panel of the column are tabulated below
Table Vii Forces And Moments Calculations

$\begin{gathered} \mathrm{P} \\ \text { anel } \end{gathered}$	Farthest column	leeward	Column bending axis on	
	Axial load (N)	$\mathrm{V}_{\text {max }}$	Axial load (N)	$\begin{aligned} & \mathrm{M}(\mathrm{~N} \\ & / \mathrm{m}) \end{aligned}$
O_{4}	203324	55900	0^{203324}	$\begin{aligned} & 769 \\ & 57 \end{aligned}$
o_{3}	$\begin{aligned} & 208580 \\ & 4.375 \end{aligned}$	$\begin{aligned} & 89987 \\ & .07 \end{aligned}$	$\begin{aligned} & 208580 \\ & 4.375 \end{aligned}$	$\begin{aligned} & 934 \\ & 81 \end{aligned}$
O_{2}	$9^{21383.6}$	$.5^{13065}$	213836	11^{110}
o_{1}	$\begin{aligned} & 220055 \\ & 4.311 \end{aligned}$	$\begin{aligned} & 16283 \\ & 3.92 \end{aligned}$	$\begin{aligned} & 220055 \\ & 4.325 \end{aligned}$	$\begin{gathered} 126 \\ 5001 \end{gathered}$

Use M30 concrete for which

$$
\begin{gathered}
\sigma_{\mathrm{cbc}}=10^{\mathrm{N}} / \mathrm{mm}^{2} \\
\sigma_{\mathrm{cc}}=8^{\mathrm{N}} / \mathrm{mm}^{2}
\end{gathered}
$$

For steel,

$$
\sigma_{\mathrm{st}}=230 \mathrm{~N} / \mathrm{mm}^{2}
$$

All the three values can be increased by 33.33% when taking wind into account.

Diameter of column $=700 \mathrm{~mm}$

International Journal of Engineering Research in Mechanical and Civil Engineering

 (IJERMCE)
Vol 2, Issue 7, July 2017

Use 12 bars of $30 \mathrm{~mm} \emptyset$ at an effective cover of 40 mm
$\mathrm{A}_{\mathrm{sc}}=\frac{\pi}{4} \times 30^{2} \times 12=8482 \mathrm{~mm}^{2}$
Equivalent area of column $=A_{c}+(m-1)$
$\mathrm{A}_{\mathrm{sc}}=455525.607$
$\mathrm{M}=\frac{280}{3 \times 10}=9.333$
Equivalent moment of inertia $=\frac{\pi}{64} \times \mathrm{d}^{4}+(\mathrm{m}-$

1) $\times A_{\text {sc }} \frac{d^{\prime 2}}{8}$
$\mathrm{D}=700 \mathrm{~mm} \mathrm{~d} \mathrm{~d}^{\prime}=700-2 \times 40=620$
$\mathrm{I}_{\mathrm{c}}=1518086 \times 10^{10} \mathrm{~mm}^{4}$
Actual direct stress in column $=\sigma_{\mathrm{cc}}^{\prime}=$ $\frac{126541 \times 10^{3}}{1.578086 \times 10^{10}} \times 350=2.80 \mathrm{~N} / \mathrm{mm}^{2}$

For safety of column, we have the condition

$$
\begin{aligned}
& \frac{\sigma_{\mathrm{cc}}^{\prime}}{\sigma_{\mathrm{cc}}}+\frac{\sigma_{\mathrm{cbc}}^{\prime}}{\sigma_{\mathrm{cbc}}} \leq 1 \\
& =0.66289 \leq 1
\end{aligned}
$$

Hence safe
Use $10 \mathrm{~mm} \varnothing$ wire rings of 250 mm c/c to tie up the main reinforcement.

Since column are $700 \mathrm{~mm} \varnothing$ increase the width of B_{2} beam 600 mm to 700 mm

Check for seismic effect
For empty tank $=5498281 \mathrm{~N}$
For tank full $=15958075 \mathrm{~N}$

For column 1

According to revised classification of earthquake zone, Madras comes under zone III (earlier to 2002 it was zone II (zone II and zone I are merged) after 2002)

Therefore, Zone III IS 1893-2002
Stiffness of column in a bay

$$
\mathrm{I}_{\mathrm{cc}}=\frac{12 \mathrm{EI}}{\mathrm{~L}^{3}}
$$

As it is the case of circular group of column
Young's modulus

$$
\begin{aligned}
& \mathrm{E}=5000 \sqrt{\mathrm{f}_{\mathrm{ck}}}=27386.128^{\mathrm{N}} / \mathrm{mm}^{2} \\
& \mathrm{~L}=4
\end{aligned} \quad \mathrm{I}_{\mathrm{c}}=1.578080 \times 10^{10} \mathrm{~mm}^{4} .
$$

(i.e; the distance between two braces and a panel)

$$
\mathrm{k}_{\mathrm{c}}=\frac{12 \times 27386.125 \times 1.518086 \times 10^{10}}{4000^{3}}=81033.12181 \mathrm{~N} / \mathrm{mm} \text {. }
$$

Stiffness of 8 column
$\sum k_{c}=8 \times 81033.12182$
$\sum \mathrm{k}_{\mathrm{c}}=648264.98$

Neglecting effect of bracing on stiffness

$$
\frac{1}{\mathrm{k}}=\sum \frac{1}{\mathrm{k}}
$$

When $\mathrm{k}=1$,Fundamental $=2 \pi \sqrt{\frac{\mathrm{w}}{\mathrm{g} \times \mathrm{k}}}=0.3147 \mathrm{sec}$

$$
\frac{\mathrm{S}_{\mathrm{a}}}{\mathrm{~g}}=0.2 \text { from fig. 2, IS } 1893-1980 \mathrm{pg} .18
$$

From IS 1893

$$
\mathrm{A}_{\mathrm{n}}=\frac{\mathrm{zIS}_{\mathrm{a}}}{2 \mathrm{Rg}} \text { for zone III } \mathrm{z}=0.16, \mathrm{I}=1, \mathrm{R}=2.50
$$

$$
\mathrm{A}_{\mathrm{n}}=6.4 \times 10^{-3}
$$

Force due to earthquake F_{eh}
$\mathrm{F}_{\text {eh1 }}=$ mass \times acceleration $=102131.68 \mathrm{~N}$
$\sum \mathrm{M}=$ Due to wind $=253082>\mathrm{F}_{\mathrm{eh}}$
Therefore no need to consider earthquake in design of columns.

10. DESIGN OF BRACINGS

$$
\frac{m_{1}}{\sin \left(\theta+\frac{\pi}{n}\right)}=\frac{m_{2}}{\sin \left(\theta-\frac{\pi}{n}\right)}=\frac{M}{\sin \left(\frac{2 \pi}{n}\right)}
$$

Hence, $\mathrm{m}_{1}=\frac{\mathrm{M}}{\sin \left(\frac{2 \pi}{\mathrm{n}}\right)} \sin \left(\theta+\frac{\pi}{\mathrm{n}}\right)$
And, $\mathrm{m}_{2}=\frac{\mathrm{M}}{\sin \left(\frac{2 \pi}{\mathrm{n}}\right)} \sin \left(\theta-\frac{\pi}{\mathrm{n}}\right)$
But, $M=S_{1} \times \frac{h_{1}}{2}+S_{2} \times \frac{h_{2}}{2}$,

$$
\therefore \mathrm{M}=\frac{\mathrm{Q}_{\mathrm{w} 1} \cdot \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \cdot \mathrm{~h}_{2}}{\mathrm{n}} \cos ^{2} \theta
$$

Where, $\mathrm{Q}_{\mathrm{w} 1}$ and $\mathrm{Q}_{\mathrm{w} 2}$ are the shear at the equivalent cylinder, at the point of contraflexure. Substituting the value of M in m_{1} and m_{2}, we get

$$
\mathrm{m}_{1}=\frac{\mathrm{Q}_{\mathrm{w} 1} \cdot \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \cdot \mathrm{~h}_{2}}{\mathrm{n} \sin \frac{2 \pi}{\mathrm{n}}} \cos ^{2} \theta \cdot \sin \left(\theta+\frac{\pi}{\mathrm{n}}\right)
$$

For m_{1} to be maximum, differentiate it with respect to θ and equal it to zero.

$$
\therefore \frac{\mathrm{d}}{\mathrm{dx}}\left[\cos ^{2} \theta \cdot \sin \left(\theta+\frac{\pi}{\mathrm{n}}\right)\right]=0
$$

or

$$
\tan \left(\theta+\frac{\pi}{n}\right)=\frac{1}{2} \cos \theta \quad \text { Eqn 5.12.1 }
$$

Solving the above, θ can be found.

$$
\mathrm{m}_{1}^{\prime}=\frac{\mathrm{M}^{\prime}}{\sin \left(\frac{2 \pi}{\mathrm{n}}\right)} \sin \left(\theta-\frac{3 \pi}{\mathrm{n}}\right)
$$

Where $\mathrm{M}^{\prime}=$ Joint moment at joint $\mathrm{A}=$ $\frac{\mathrm{Q}_{\mathrm{w} 1} \cdot \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \cdot \mathrm{~h}_{2}}{\mathrm{n}} \cos ^{2} \theta \cdot\left(\theta-\frac{2 \pi}{\mathrm{n}}\right)$

International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

$$
\begin{aligned}
& \mathrm{m}_{1}^{\prime}=\frac{\mathrm{Q}_{\mathrm{w} 1} \cdot \mathrm{~h}_{1}+}{}+\mathrm{Q}_{\mathrm{w} 2} \cdot \mathrm{~h}_{2} \\
& \mathrm{nsin} \frac{2 \pi}{\mathrm{n}} \cos ^{2}\left(\theta-\frac{2 \pi}{\mathrm{n}}\right) \cdot \sin (\theta \\
&\left.-\frac{3 \pi}{\mathrm{n}}\right)
\end{aligned}
$$

If L is the horizontal length of brace $A B$, shear force in it is given by:

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{b}}=\frac{\mathrm{m}_{1}-\mathrm{m}_{1}^{\prime}}{\mathrm{L}} \times \\
& \quad \text { Or } \quad \mathrm{S}_{\mathrm{b}}=\frac{1}{\mathrm{~L}} \frac{\mathrm{Q}_{\mathrm{w} 1} \cdot \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \cdot \mathrm{~h}_{2}}{\mathrm{nsin} \frac{2 \pi}{n}} \cos ^{2} \theta \cdot \sin \left(\theta+\frac{\pi}{\mathrm{n}}\right) \\
& \cos ^{2}\left(\theta-\frac{2 \pi}{\mathrm{n}}\right) \cdot \sin \left(\theta-\frac{3 \pi}{\mathrm{n}}\right)
\end{aligned}
$$

Differentiating the above for maximum value, we get $\theta=\frac{\pi}{n}$. The angle at B_{1} (fig...) will then be $=$ $\theta-\frac{\pi}{n}=\frac{\pi}{n}-\frac{\pi}{n}=$ zero

Hence, maximum shear force in a brace occurs when the wind blows parallel to it.

$$
\begin{aligned}
& \therefore\left(\mathrm{S}_{\mathrm{b}}\right)_{\max }=\frac{\mathrm{Q}_{\mathrm{w} 1} \cdot \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \cdot \mathrm{~h}_{2}}{\mathrm{Lnsin} \frac{2 \pi}{\mathrm{n}}} \times\left[\cos ^{2} \frac{\pi}{\mathrm{n}} \sin \frac{2 \pi}{\mathrm{n}}+\right. \\
& \left.\cos ^{2} \frac{\pi}{\mathrm{n}} \sin \frac{2 \pi}{\mathrm{n}}\right] \\
& ==\frac{\mathrm{Q}_{\mathrm{w} 1} \cdot \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \cdot \mathrm{~h}_{2}}{\operatorname{Lnsin} \frac{2 \pi}{\mathrm{n}}} \times\left(2 \cos ^{2} \frac{\pi}{\mathrm{n}} \sin \frac{2 \pi}{\mathrm{n}}\right)
\end{aligned}
$$

The bending moment M_{1} in brace is given by

$$
\tan \left(\theta+\frac{\pi}{8}\right)=\frac{1}{2} \cot \theta
$$

Solving graphically we get $\theta=24.8$,

$$
\mathrm{M}_{1 \text { max }}=\frac{\mathrm{Q}_{\mathrm{w} 1} \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \mathrm{~h}_{2}}{\mathrm{n} \sin \frac{2 \pi}{\mathrm{n}}} \cos \theta^{2} \times \sin \left(\theta+\frac{\pi}{\mathrm{n}}\right)
$$

For the lowest junction C

$$
\begin{gathered}
\mathrm{h}_{1}=5 \mathrm{~m}, \mathrm{~h}_{2}=4 \mathrm{~m} \\
\mathrm{M}_{1 \text { max }}=255394.186 \mathrm{Nm}
\end{gathered}
$$

The maximum shear force $\left(S_{b}\right)$ in brace is $\frac{\mathrm{Q}_{\mathrm{w} 1} \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \mathrm{~h}_{2}}{\mathrm{n} \sin \frac{2 \pi}{\mathrm{n}}} \cos \theta^{2} \times \sin \left(\theta+\frac{\pi}{\mathrm{n}}\right)$

$$
\mathrm{S}_{\mathrm{bmax}}==116199.0841 \mathrm{~N}
$$

Calculation of length of brace (L)
Each angle of polygon $=($ No. of sides - 2$) \times 180^{\circ}$
8 columns forms octagon
$\mathrm{n}=8$
Each angle $=(8-2) \times 180^{\circ}=135^{0}$

$$
\begin{gathered}
\tan 67.5=\frac{\mathrm{L}_{1}}{5.15-\mathrm{L}_{1}} \\
\mathrm{~L}_{1}=3.64163 \\
5.15-\mathrm{L}_{1}=1.51 \\
\mathrm{~L}=\sqrt{1.57^{2}++3.6416^{2}}=3.94 \mathrm{~m}
\end{gathered}
$$

For $\theta=\frac{\pi}{8}$ the value of m_{1}

$$
\left(\left(\left(\mathrm{m}_{1}\right)\right)_{\theta=\frac{\pi}{n}}=\frac{\mathrm{Q}_{\mathrm{w} 1} \mathrm{~h}_{1}+\mathrm{Q}_{\mathrm{w} 2} \mathrm{~h}_{2}}{\mathrm{n} \sin \frac{2 \pi}{n}} \cos \frac{\pi^{2}}{\mathrm{n}} \times \sin \left(\frac{\pi}{8}+\frac{\pi}{8}\right)\right.
$$

$$
=228912.1366
$$

Twisting moment at $\theta=\frac{\pi}{8}$ is $M_{t}=0.05 \mathrm{~m}_{1}$ $0.05 \times 228912.1366=11445.60683 \mathrm{~m}$
Thus the brace will be subjected to the critical combination of maximum shear force and a twisting moment M_{t} when the wind blows parallel to it (i.e; $\theta=\frac{\pi}{8}$)

$$
\begin{aligned}
& \text { For M30 concrete } \mathrm{c}=\sigma_{\mathrm{cbc}}=10 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \\
& \qquad \begin{aligned}
\sigma_{\mathrm{st}} & =230 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \\
\mathrm{k} & =0.28865 \\
\mathrm{k} & =0.9038 \\
\mathrm{R}=\frac{1}{2} \times 0.9038 & \times 0.28865 \times 10=1.30441
\end{aligned}
\end{aligned}
$$

Equating the moment of area at NA

$$
\begin{aligned}
\frac{1}{2} \times b \times(0.288 d)^{2} & +(9.33-1) \\
& \times \operatorname{pbd}(0.288 d-0.1 d)
\end{aligned}
$$

From which $\mathrm{p}=8.168 \times 10^{-3}$
$\% \mathrm{p}=0.8168 \%$
Since the brace is subjected to both BM and TM we have

$$
M_{e q}=M_{T}+M
$$

$\mathrm{M}=\mathrm{BM}=\left(\mathrm{M}_{1}\right)_{\text {max }}=255394.19$

$$
\mathrm{M}_{\mathrm{T}}=\frac{\mathrm{T}}{1.7}\left[1+\frac{\mathrm{D}}{\mathrm{~B}}\right] \text { where } \mathrm{T}=\mathrm{M}^{\mathrm{t}}=11445.607
$$

$$
\mathrm{M}_{\mathrm{eq}}=277836.5523 \mathrm{Nm}
$$

In order to find the depth of section equate M.R of section to external moment

$$
\begin{gathered}
\mathrm{b} \times \mathrm{x}_{\mathrm{a}} \times \frac{\mathrm{c}}{2}\left(\mathrm{~d}-\frac{\mathrm{x}_{\mathrm{a}}}{2}\right)+(\mathrm{m}-1) \mathrm{A}_{\mathrm{sc}} \times \mathrm{c}^{\prime} \times\left(\mathrm{d}-\mathrm{d}_{\mathrm{c}}^{\prime}\right) \\
=\mathrm{M}_{\mathrm{eq}} \\
\mathrm{c}=(\text { increase by } 33.33 \%)=1.333 \times 10=13.33
\end{gathered}
$$

According to IS 456 modified modular ratio of steel in compression zone of doubly reinforced section is 1.5 m

$$
\begin{aligned}
\mathrm{m}^{\prime}=1.5 \mathrm{~m} \\
=1.5 \times 9.33 \\
=13.99 \\
\cong 14
\end{aligned} \quad \begin{aligned}
& \mathrm{c}^{\prime}=\text { Compression at steel level } \\
&= 13.33 \times \frac{(0.288-0.1) \mathrm{d}}{0.288 \mathrm{~d}} \\
&= 8.7035 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Substituting the values in the above equation; $\mathrm{d}=600.2139 \mathrm{~mm}$

ISSN (Online) 2456-1290
International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

Adopt $\mathrm{D}=700 \mathrm{~mm}$ so that $\mathrm{c}=700-25-125$ $=662.5 \mathrm{~mm}$
$\mathrm{A}_{\mathrm{st}}=\mathrm{p} \times \mathrm{b} \times \mathrm{D}=1715.07 \mathrm{~mm}^{2}$
No. of 25 mm bars $=\frac{1715}{\frac{\pi}{4} \times 25^{2}}=3.49377$

$$
\cong 4 \text { nos. }
$$

Provide 4 Nos. of $20 \mathrm{~mm} \emptyset$ bars each at top and bottom

$$
100 \frac{\mathrm{~A}_{\mathrm{s}}}{\mathrm{bD}}=0.935 \%
$$

Maximum shear $=116199.057 \mathrm{~N}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{e}}= & \mathrm{V}+1.6 \frac{\mathrm{~T}}{\mathrm{~b}} \\
& =177242.3 \mathrm{~N} \\
\mathrm{~T}_{\mathrm{ve}} & =0.84450 \mathrm{Mpa} \\
\mathrm{~T}_{\mathrm{ve}}= & \mathrm{T}_{\mathrm{c}, \max } \\
\mathrm{~T}_{\mathrm{c}}= & 0.37+(18.5 \times 0.04 / 25) \\
& =0.4 \%
\end{aligned}
$$

Hence Transverse reinforcement is necessary

$$
\frac{\mathrm{A}_{\mathrm{sv}} \sigma_{\mathrm{sv}} \mathrm{~d}_{1}}{\frac{\mathrm{v}}{2.5}+\frac{\mathrm{T}}{\mathrm{~b}_{1}}}=\mathrm{s}_{\mathrm{v}}
$$

$\mathrm{b}_{1}=300-25 \times 2-25=225$
$\mathrm{d}_{1}=700-25 \times 2-25=625$
using 12 mm diameter 2 legged stirrups

$$
\mathrm{A}_{\mathrm{sv}}=2 \times \frac{\pi}{4} \times 12^{2}
$$

$$
\begin{aligned}
& =226 \mathrm{~mm}^{2} \\
& \frac{A_{s \mathrm{~s}}}{\mathrm{~s}_{\mathrm{v}}}=0.847069
\end{aligned}
$$

Minimum Reinforcement
$=0.57913$

$$
\begin{aligned}
& \frac{A_{\mathrm{sv}}}{\mathrm{bs}_{\mathrm{v}}}=\frac{\mathrm{Tve}-\mathrm{Tc}}{\sigma_{\mathrm{sv}}} \\
& \frac{\mathrm{~A}_{\mathrm{sv}}}{\mathrm{~s}_{\mathrm{v}}}=0.84707 \\
& \mathrm{~s}_{\mathrm{v}}=579.496 \mathrm{~mm}
\end{aligned}
$$

Spacing should not exceed $x_{1}, 300, \frac{x_{1}+y_{1}}{4}$
$\mathrm{x}_{1}=225+25+12=272 \mathrm{~mm}$

$$
\mathrm{y}_{1}=625+25+12=672 \mathrm{~mm}
$$

$\frac{x_{1}+y_{1}}{4}=236 \mathrm{~mm}$
Hence provide 12 mm diameter stirrups @ 230 mm c/c
$\mathrm{D}>450 \mathrm{~mm}$, hence provide side face reinforcement of 0.1%
$\mathrm{A}_{\mathrm{sl}}=210 \mathrm{~mm}^{2}$
Provide $2-10 \mathrm{~mm}$ diameter at each face giving total $\mathrm{A}_{\mathrm{sl}}=44 \times 78.5=314 \mathrm{~mm}^{2}$

Provide $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ haunches at the junction of braces with columns \& reinforce it with 10 mm diameter bars.
11.DESIGN OF RAFT FOUNDATION

Vertical load from filled tank and column = $2200554.375 \times 8=17604435 \mathrm{~N}$

Weight of water $=10459794.66$
Vertical load on empty tank and column = $17604435-1045979=7144640.34 \mathrm{~N}$
$\mathrm{V}_{\text {max }}$ due to wind load $=162833.9 \times 8$

$$
=1302671.2 \mathrm{~N}
$$

which is less than 33.33% if the super imposed load
$=\left(\frac{33.33}{100} \times 10454794.7\right)=3486598.22 \mathrm{~N}$
Assume Self weight etc. $=10 \%=1760443.5 \mathrm{~N}$
Total load $=1.1 \times 17104435=19364878.5 \mathrm{~N}$

Area of foundation equation $=\frac{17364878.5}{180000}$

$$
=107.58 \mathrm{~m}^{2}
$$

Circumference of circular column $=\pi \times 10=31.42$ $\mathrm{m}\{$ i.e. $(10.6-2 \times 0.3=10 \mathrm{~m})\}$

Width of foundation required $=\frac{107.57}{31.42}$

$$
=3.424 \mathrm{~m}
$$

Take width $=3.64 \mathrm{~m}$
Hence, inner diameter $=10-3.64$

$$
=6.36 \mathrm{~m}
$$

Outer diameter $=10+3.64=13.64 \mathrm{~m}$
Area of annular raft $=\frac{\pi}{4} \times\left(13.64^{2}-6.36^{2}\right)$

$$
=114.35 \mathrm{~m}^{2}
$$

Moment of inertia of slab @ diameter
$\frac{\pi}{64} \times\left(13.64^{2}-6.36^{2}\right)=1618.8 m^{4}$
Total load on tank empty $=7144640-34+1760448.5$

$$
=8905083.8450 \mathrm{~N}
$$

Stabilizing moment
$=8905083.84 \times \frac{13.84}{2}$
$=60732671.8 \mathrm{~N}-\mathrm{m}$
Let the base of raft be 2 m below ground level
Therefore M_{w} at base $=142142 \times 11760 \times 33060 \times$ $(14+10+6)$

$$
=44572245.40 \mathrm{~N}-\mathrm{m}
$$

Hence the soil pressure @ edges along diameter are
(a) Tank full $=188610.2864 \mathrm{~N} / \mathrm{m}^{2}$ or 150084.511 $\mathrm{N} / \mathrm{m}^{2}$
(b) Tank empty $=97138.54 \mathrm{~N} / \mathrm{m}^{2}$ or 58612.8211 $\mathrm{N} / \mathrm{m}^{2}$

Under the wind load the allowable bearing capacity is increased to $180 \times 1.333=240 \mathrm{KN} / \mathrm{m}^{2}$

Which is greater than the maximum soil pressure $=$ $188.610 \mathrm{KN} / \mathrm{m}^{2}$

Hence the foundation raft will be designed only for super imposed load

ISSN (Online) 2456-1290
International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

A ring beam of 100 mm width may be provided. The foundation will be designed for an average pressure.

$$
\mathrm{p}=\frac{17604435}{114.35}=153952.2081 \mathrm{~N} / \mathrm{m}^{2}
$$

The overhang " x " of raft slab $=\frac{1}{2} \times\{(13.64-$ 6.36) -0.7$\}=1.47 \mathrm{~m}$
B. $\mathrm{M}=166337.6633 \mathrm{~N}-\mathrm{m}$
S.F $=153952.2 \times 1.47$

$$
=226309.746 \mathrm{~N}
$$

$\mathrm{d}=357.98 \mathrm{~mm}$
Provide 400 mm thick slab with effective depth $=$ 340 mm

Provide total depth of 250 mm at the edge

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{st}}=\frac{166337.66 \times 1000}{230 \times 0.9038 \times 360} \\
& \quad=2141.69 \mathrm{~mm}^{2}
\end{aligned}
$$

Spacing of $20 \mathrm{~mm} \emptyset$ bars $=\frac{1000 \times \frac{\pi}{4} \times 20^{2}}{2141.7}$

$$
=146.7 \mathrm{~mm}
$$

Hence provide $20 \mathrm{~mm} \varnothing$ radial bars @ $140 \mathrm{~mm} c / c$ at bottom of slab

$$
\text { Area of distribution steel }=\frac{0.15}{200} \times 1000 \times 400
$$

$$
=600 \mathrm{~mm}^{2}
$$

Spacing of $10 \mathrm{~mm} \emptyset$ bars $=\frac{1000 \times 78.5}{600}$
$=130.5 \mathrm{~mm}$
$\cong 130 \mathrm{~mm}$
Hence provide $10 \mathrm{~mm} \emptyset$ bars @ $130 \mathrm{~mm}{ }^{C} / c$ at supports. Increase spacing as 200 mm @ edges.

VI - CONCLUSION

Elevated water tanks provide head for supply of water. When water has to be pumped into the distribution system at high heads without any pumps for supply however pumps are necessary for pumping only till tank is filled. Once it is stored in tank the gravity creates the pressure for free, unlike pumps. We need pressurized water to fledge and make taps eject water at an appropriate rate. Elevated tanks do not require continuous operation of pump, as it will not affect the distribution system since the pressure is maintained by gravity. Strategic location of tank can equalize water pressure in the distribution system

The pressure of water flowing out of an elevated tank depends upon the depth of the water in tank .A nearly empty tank probably will not provide enough pressure while a completely full tank may provide too
much pressure the optimal pressure is achieved at only one depth .While elevated tank provide can provide the best pressure, they are far more expensive and generally, it is used where supply is high demand

Elevated circular water tanks with large capacity and flat bottom needs large reinforcement at the ring beams. To overcome this in intze tank, by providing a conical bottom and another spherical bottom reduces the stresses in ring beams. Intze tank is more economical for high capacity reducing the steel requirement.

VII - SUMMARY

An effort has been taken to provide a design of circular overhead water tank which is more economical, simple and having a better life span with the help of IS 3370-2009 in WORKING STATE METHOD.

Design of water tank manually is tedious job ,in this project circular INTZE WATER TANK is designed using membrane analysis separate continuity analysis is not done Calculations for continuity effect can be done by stiffness methods but it makes the process very complicated .continuity is taken in to account by introducing sufficient steel at joints.

FUTURE SCOPE

From the review of all the papers, it has been concluded that most of the authors have designed the circular water tank with the help of SAP2000, C++ \& STAADPRO software. So, the attempt is to be made to design the overhead circular water tank with the help of ETABS software. A reinforced concrete member of liquid retaining structure is designed on the usual principles ignoring tensile resistance of concrete in bending

REFERENCES

1. AsatiAnkush N., KaduMahendra S. (2014), "Seismic investigation of RC elevated water tank for different types of staging patterns",4-7
2. Bhandari M, Singh Karan Deep (2014), "Comparative study of design of water tank", 231238
3. Bhandari M, Singh Karan Deep (2014), "Economic design of water tank of different shapes" $45-53$
4. Dixit B Patel. Patel. Chirag. N. (2016), "A review on overhead water tank staging considering Fluid-Structure-Soil Interaction" 116-120
5. Dona Rose K J, Sreekumar M, Anumod A S (2015), "A study of overhead water tanks subjected to dynamic loads" $344-348$
6. J. Yogeshwarana, C.Pavithra,(2015), " Behaviour of an elevated RC tank subjected to various earthquake responses", 440-444
7. KagdelwarBhagyashree Prakash, Patil A. V. (2016), "Economic design of RC elevated water tanks by using IS 3370 and its revision is 3370 (2009)", 517527
8. Young-MyungYang,Ji-Hoon Kim, HeungSeokSeo, Kangwon Lee, Ihn-Soo Yoon (2006), " Development of the world's largest above-ground full containment Lng storage tank"
