

(IJERMCE)

Vol 2, Issue 7, July 2017

Design of Circular Overhead Water Tank

^[1] Neha. S. Vanjari, ^[2] krutika. M. Sawant, ^[3] Prashant .S. Sisodiya, ^[4] S. B. Patil
 ^{[1][2][3]} Students, ^[4] Associate Professor Department of Civil Engineering
 Datta Meghe College of Engineering, Sector 3, Airoli, Navi Mumbai-400708, India

Abstract— The water is the most essential element to a life on the earth. It is a liquid which covers about 71.4% of the earth. It is the most ubiquitous substance in the human body. The approximate consumption of water in a population of around 20,000 is 200 litres/head/day. The water is also important in the agricultural and industrial sectors. Water demand is one of the key issues in water supply planning. To overcome this issue, the present water tank designs have to be modified. Overhead water tank is the most effective storing facility used for domestic or even industrial purpose. The design and construction methods in reinforced concrete are influenced by the prevailing construction practices, the physical property of the material and the climatic conditions, linings, the ground conditions i.e. type of soil, soil bearing capacity etc. This paper gives an overall designing procedure of an Overhead Circular Intze tank using LIMIT STATE METHOD from IS-3370:2009. In IS-3370:2009, limit state method considering two aspects mainly limits the stress in steel and limits the cracking.

Index Terms-Economical Design, Intze tank, IS-3370:2009, Limit State Method

I. INTRODUCTION

A water tank is container for storing water and any other liquid. The main objectives in any design of water tank are to provide safe drinkable water after storing for long time, optimizing cost, strength, service life and performance during special situations like earthquakes. The other objectives are to maintain pH of water and to prevent the growth of microorganism. Water is susceptible to a number of ambient negative influences, including bacteria, viruses, algae, changes in pH, and accumulation of minerals, accumulated gas. A design of water tank or container should do no harm to the water.

II. AIMS AND OBJECTIVES

• To study the various forces acting on a water tank. Understanding the most important factors that plays role in designing of a water tank.

• To study the guidelines of design of water tank according to IS code and checking the design.

• To know about the design philosophies of water tank design.

• Preparing a water tank design which is economical and safe, providing proper steel reinforcement in concrete and studying its safety according to various code.

III. INTZE TANK

A water tower built in accordance with the Intze Principle has a brick shaft on which the water tank sits. The base of the tank is fixed with a ring anchor made of iron or steel, so that only vertical, not horizontal, forces are transmitted to the tower. Due to the lack of horizontal forces the tower shaft does not need to be quite as solidly built.

The main advantages of such tank are that the outward thrust from top of conical part is resisted by ring beam B3.

IV. METHOD OF ANALYSIS

A. ANALYSIS OF SHELL STRUCTURES

• The first step is to make imaginary cut at the junction and assume the imaginary supports condition consistence with the membrane analogy. This assumption permits the determination of membrane forces and deformation due to different loading condition.

• The second step is to apply restraining forces at the edges consistent with the actual support condition to make the deformation compatible at the junction.

B. ANALYSIS OF ROOF WALL JOINT

• The roof may be designed as a spherical or conical dome.

Vol 2, Issue 7, July 2017

C. ANALYSIS OF THE SPHERICAL BOTTOM CONICAL

WALL JOINT

• The joint may either be supported on columns or on a circular shaft.

• If the tank is supported on columns, the two shells are connected through a ring beam to the columns and, if the tank is supported on a circular shaft, the threw shells can be jointed together without a ring beam.

D. MEMBRANE ANALYSIS

• In the membrane analysis the member are assumed to act independent of the others. Hence individually all components of the structure are designed.

• The member are therefore subjected to only direct stresses and as the joints are not considered rigid i.e. as all members are acting individual bending moment is not introduced.

VARIOUS STRUCTURAL ELEMENTS OF INTZE TANK ARE:

- Top Spherical dome
- Top ring beam B1
- Side wall (circular)
- Bottom ring beam B2
- Bottom Spherical dome
- Bottom ring beam B3

V. DESIGN OF INTZE TANK

POPULATION FORECAST FOR A VILLAGE

A. POPULATION FORCAST

Table II - POPULATION FORECAST Populati Х Y Year % % on increa incre incr Decreas ease se ase e 1200 1970 800 1980 2000 66.6 7 2800 1990 800 40.0 26.67 0 0 2000 4000 1200 400 42.8 -2.87 7 Sum 2800 400 149. 23.8 54 11.9 Avg. 933.33 200 49.8 4

Arithmetic Progression Method

Population (P) = $P_0 + nx = 4000 + 1 \times 933.33 = 4934$

2. Geometric Progression Method $P_n = P_o(1 + \frac{r}{100})^n$ $r = \sqrt[3]{0.6667 \times 0.4 \times 0.4287} = 0.48533 = 48.53 \%$ $P_{2010} = 4000 \times (1 + \frac{48.53}{100})^1 = 5942$ 3. Incremental Increase Method $P_n = Po + nx + \frac{n \times (n+1)}{2} \times y$ When n = 1; $P_{2010} = 4600$ Assuming changing increase rate method $P_{2010} = (42.87 - 11.9) \times \frac{4000}{1000} = 6118.8$ Considering geometric increase method P = 5942 = 6000Therefore, design population of 6000 Assuming per capita demand 165 lpcd Capacity required = 165×6000 lpcd = 990000 lpcd

In one day = 990000 lpcd

Design volume or capacity = 1×10^{6} ltr = 1000 m³

B. DESIGN WITH MEMBRANE ANALYSIS 1. MEMBRANE ANALYSIS

In the membrane analysis the member are assumed to act independent of the others.

Hence individually all components of the structure are designed.

The design of membrane analysis is carried as follows,

Consider, M30 concrete HYSD Fe 415 bars Intensity of wind pressure = $1200N/m^2$ Thickness = 100mmBearing capacity = 180 KN/m^2 Let diameter of ring beam = $B_2 = D_o = 10 \text{ m}$ Let the diameter of cylindrical portion D = 15 mR = 7.5 m h = height of cylindrical Rise h₁ = 1.8 m Rise h₂ = 1.6 m Radius R₂ of bottom dome is given;

 $\mathbf{h} \times (\mathbf{2R}_2 - \mathbf{h}_2) = \mathbf{5}^2$

 $1.6 \times (2R_2 - 1.6) = 5^2$

 $R_2 = 8.61 m$

(IJERMCE)

Vol 2, Issue 7, July 2017

In general the volume of water stored is given by; $V = \frac{\pi}{4}D^2h + \frac{\pi}{12}h_0(D^2 + D_0^2 + Dh_0) - \frac{\pi}{3}h_2^2(3R_2 - h_2)$ sin $\omega_c = 0.5807$

$$\sin \varphi_2 = 0.5807$$

 $\varphi = 35.5$
 $\varphi = 1000 \text{ m}^3$

Required volume = 1000 m³ \therefore h = 4.619 m Allowing for free board; h = 5 m For top dome, the radius R₁; By property of circle, h₁ × (2R - h₁) = 7.5² R₁ = 16.525 sin φ_1 = 0.453 φ = 26.9914

2. DESIGN OF TOP DOME

$$\begin{split} R_1 &= 16.525 \text{ m } \sin \phi_1 = 0.453 \cos \phi_1 = 0.8910 \\ \text{Let thickness } t_1 &= 100 \text{ mm} = 0.1 \text{ m} \\ \text{Taking Live load} &= 1.5 \text{ KN/m}^2 \\ \text{Pressure on top of dome } p &= 0.1 \times 25000 + 1500 \\ &= 4000 \text{N/m}^2 \\ \text{Meridional thrust at edge} \\ T_1 &= \frac{pR_1}{1 + \cos \phi_1} \\ T_1 &= 34599.857 \text{N/mm}^2 \end{split}$$

Maximum hoop stress occurs at the center $\frac{PR_1}{t_1} = \frac{4000 \times 16.525}{0.1} \times \frac{1}{2} = 330500^{\text{N}}/\text{m}^2$

 $= 0.33^{\text{N}}/\text{mm}^2$ (safe)

Since stresses are within safe limit, provide nominal reinforcement @ 0.35%

 $A_{s} = \frac{0.35}{100} \times 100 \times 1000 = 350 \text{ mm}^{2}$ $(A_{st} = 100 \text{ mm}) \text{ using 8 mm } \emptyset \text{ bars } A_{\emptyset} = 50 \text{ mm}^{2}$ $Spacing = \frac{1000 \times 50}{350} = 142.85 \text{ mm} \cong 140 \text{ mm}$

Hence, Provide # 8mm \emptyset @ 140 mm ^c/_c

3. DESIGN OF TOP RING BEAM B1

Horizontal component of T is $P_1 = T_1 \cos \phi_1 = 300831.02763 \text{ N/m}$

Total Tension tending to rupture the beam $=\frac{P_1 \times D}{2} = 231232.71 \text{ N/m}$ Permissible Stress in HYSD = 130 N/mm² Ash = $\frac{231232.7}{130} = 1778.71 \text{ mm}^2$ No. of 20 mm Ø bars = $\frac{1541.5}{380.13}$ = 6 Actual A_{sh} provided = 341.16 × 6 = 1884.95 mm² $\frac{\text{Tension causing rupture}}{[A + (9.333 - 1) × Ash]} \le 1.3 \text{ N/mm^2}$ $\frac{231232.7072}{[A + 8.333 × 1884.95]} = 1.3$ A = 162163.45 mm²

Provide ring beam of 400 mm depth and 420 mm width. Tie the 20 mm \emptyset ring by 60 mm diameter nominal stirrups @ 200 mm c/c

 $A_{prov} = 400 \times 420 = 168000 \text{ mm}^2 \therefore \text{ OK}$

4. DESIGN OF CYLINDRICAL WALL

In the membrane analysis, the tank wall is assumed to be free at top and bottom. Maximum hoop tension occurs at bottom of the wall $\rho = p \frac{D}{2} = \frac{whD}{2} = 367500 \text{ N/m height}$ Provide rings on both the faces On each face = 1413.461 mm² Spacing of 14mmØ rings = $\frac{1000 \times 14^2 \times \frac{\pi}{4}}{1413}$ = 108.9mm Provide 14mmØ rings at 100mm spacing ^C/_C at bottom This spacing can increase at the top Actual Ash provide = $\frac{1000 \times 14^2 \times \frac{\pi}{4}}{100}$ = 1539.3mm² On each face permitting 1.2N/mm² stress on composite section 367500 $\frac{1000t+[9.33-1]\times1539.3\times2}{1000t+[9.33-1]\times1539.3\times2} = 1.2$ t = 254.94mm = 25.4cm Minimum thickness = (3H + 5) cm (H = 5m) $3 \times 5 + 5 = 20$ cm However provide t = 300mm at bottom and taper it to 200mm at top Average t = $\frac{300+200}{2}$ = 250mm Percent distribution steel = 0.24% of surface zone of wall As tank dimensions are not more than 15m $\therefore 0.24\%$ of surface zone Therefore, $A_{sh} = 325 \text{ mm}^2$ Let area of steel on each face be 325mm² $A_{sh} = 650 mm^2$ Spacing of 8mm Ø bars = $\frac{1000 \times 50.3}{32^{\text{F}}}$ = 155mm Provide8mm \emptyset bars at 150mm ^c/_c on faces keep a clear cover of 25mm To resist hoop tension at 2m below top $A_{sh} = \frac{2}{5} \times 2826.93 = 1130.7692 \text{ mm}^2$ Therefore, spacing of 14mm Ø rings

Vol 2, Issue 7, July 2017

 $=\frac{1000\times\frac{\pi}{4}\times14^2}{1130.7692}$

= 136.1357mm×2= 272.27mm Hence provide the rings at 270mm ^C/_C in top 2m height (1-2m)

At 3m below top

 $A_{sh} = 1696.1538 \text{mm}^2$

Spacing of 12mmØ ring = $\frac{1000 \times \frac{\pi}{4} \times 14^2}{\frac{1696.1538}{2}} = 181.81$ mm = 180mm

Hence provide the rings at $180 \text{mm}^{\text{C}/\text{C}}$ in next 1m height (2-3m)

At 4m below the top

 $A_{sh} = \frac{4}{5} \times 2826.923 = 2261.93 \text{mm}$ $S_{v} = \frac{1000 \times \frac{\pi}{4} \times 14^{2}}{\frac{2261.93}{2}} = 136.1357 \text{mm}$

Provide 14mm \emptyset ring at 130mm at next 1m height (3-4m)

In last 1m height provide rings of 100mm $^{\rm C}/_{\rm C}$ as found earlier (4-5m)

5. DESIGN OF RING BEAM B3

Ring beam B3 connects the tank wall conical dome. The vertical load at the junction of the wall with conical dome is transferred to ring beam B3 by meriodional thrust in conical dome. The horizontal component of thrust cause hoop tension at the junction. Ring beam takes up this hoop tension.

In our design w consist of per running meter (i) Load of top dome = $T_1 \sin \phi_1 = 15703.41152$ N (ii) Load due to ring beam B₁ $= 0.4 \times (0.42 - 0.2) \times 1 \times 25000$ Depth = 0.4mBreadth = 2400 N/m (iii) Load due to tank wall = $5 \times \left(\frac{0.2+0.5}{2}\right) \times$ $1 \times 25000 = 31250 \text{ N/m}$ (iv) Self weight of beam B₃(1m × 0.6m) $((1-0.3) \times 0.6) \times 25000 = 10500 \text{ N/m}$ Therefore, Total W = 59853.41 $^{\rm N}/_{\rm m}$ Inclination of conical dome wall with vertical = $\phi_0 = 45^0$ $\sin \phi_0 = \cos \phi_0 = \frac{1}{\sqrt{2}}; \tan \phi = 1s$ $P_{\rm T} = \tan \phi = 59853.41152 \times \tan 45 = 59853.41 \text{ M/m}$ $P_w = (water pressure) \times area = w.h \times (d_3 \times 1)$ = 29400 N/m

$$P_3 = (P_T + P_w)\frac{D}{2}$$

= 669400.58 N Hoop stress developed (tensile) resisted entirely in steel hoops. The area of which is

 $A_{sh} = 5149.235 \text{ mm}^2$

No. of 30 mm Ø bars = $\frac{5073.08}{\frac{\pi}{4} \times 30^2}$ = 7.28 = 8 bars

Hence provide 8 rings of 30 mm Ø bars. Actual $A_{sh} = 5654.87 \text{ mm}^2$

Stress in equivalent section = force

area of equivalent section of concrete

Area of equivalent section of concrete = $A_c + m.A_{sh} - A_{sh} = 647122.032 \text{ mm}^2$

Stress in equivalent section = $\frac{669400.58}{1000 \times 600 + 8.333 \times 5654.87}$

1.0344 $^{\text{N}}/_{\text{mm}^2}$ < 1.3Hence safe.

The 8 mm \emptyset distribution bars (verticals bars) provided in the wall at 150 mm c/c should be taken around the above rings at act as stirrups.

6. DESIGN OF BOTTOM DOME

Bottom dome develops compressive stresses both meridionally as well as hoops due to weight of water supported by it and also due to its own weight.

R2 = 8.61 m $\sin \phi_2 = 0.5807 \cos \phi = 0.8141$

Let, H0 be the total depth of water above the edges of dome

The weight of water above the surface of dome

$$\begin{split} &W0 = \left[\frac{\pi}{4}D_0^2H_0 - \frac{\pi h_2^2}{3}(3R_2 - h_2)\right] \times 20\\ &Total surface area of dome = 2\pi R_2 h_2\\ &Self-weight of dome = 2\pi R_2 h_2 t_2 \times r_c\\ &t_2 \rightarrow Thickness of bottom dome\\ &Total load WT = W0 + 2\pi R_2 h_2 t_2 \times r_c\\ &(\pi D \times T_2) \sin \emptyset_2 = Total load (WT)\\ &T2 \rightarrow Thrust per meter\\ &T2 \times \pi D \rightarrow Total thrust force\\ &(sin\emptyset)T_2 = \frac{W_T}{\pi D}\\ &T2 = \frac{W_T}{\pi D sin \emptyset_2}\\ &Intensity of load (p2) = \frac{W_T}{Surface area of dome}\\ &P2 = \frac{W_T}{2\pi R_2 h_2}\\ &We know, \end{split}$$

(IJERMCE)

Vol 2, Issue 7, July 2017

In spherical portions, max hoop stress (derived earlier) $\frac{\text{pressure xradius}}{2} = \frac{P \times R}{2}$ Hence, pressure $p = \frac{\frac{p_1 + 2s_1 + 2}{2t}}{\frac{p_2 \times R_2}{2t_2}}$ Weight of water W0 on the dome is $\left(\frac{\pi}{4} \times 10^2 \times 7 - \frac{\pi}{3} \times 1.6^2 (3 \times 8.61 - 10^2)\right)$ W0 $(1.6)) \times 9800 = 4751259 \text{ N}$ Let the Thickness of bottom dome be 250 mm Self-weight = $2\pi R_2 h_2 t_2 \times 2500$ = 54098.225 N Total weight = 529224100 N (T2) Meridional Thrust = $\frac{W_T}{-T}$ $\pi D_0 sin \emptyset_0$ = 290093 N/mIntensity of load per unit area = $\frac{5292241}{2\pi \times 8.61 \times 1.6}$ = 61142 N/mMeriodional Stress = $\frac{290093}{250 \times 100}$ = 1.16 N/mm2 (safe) 290093 Intensity of Pressure (load per unit area) W_{T} WT $\frac{W_{\rm T}}{{\rm surface\,area}} = \frac{W_{\rm T}}{2\pi R_2 h_2}$ =61142N/m2

Max Hoop Stress
$$\rightarrow \frac{p_{2 \times R_2}}{2t_2} = 1052860 \text{ N/}_{m^2}$$

$$= 1.0528 \text{ N/mm}^2 < 2.0 (for M30) (safe)$$

Area of Steel \rightarrow Bottom dome provided 0.24% (min for HYSD) of steel in both the faces (As per IS 3370-PART-2)

As in each face (thickness =
$$\frac{0.25}{2}$$
 = 0.125m)
As = $\frac{0.24}{100} \times \frac{250}{2} \times 100$

= 300 mm2 in each face

Therefore, Total As = $2 \times 300 = 600 \text{ mm2}$ (600 mm2 in each direction and 300 mm2 in each face)

Spacing of # 10 mm Ø bars =
$$\frac{1000 \times \frac{\pi}{4} \times 10^2}{600}$$

= 130.89 mm

 $\cong 130 \text{ mm}$

Provide # 10mm @ 130 mm $^{C}/_{C}$ in both directions. Also provide 16 mm Ø meriodinal bar @ 100 mm c/c near water face for 1 m length to take of continuity effect. The thickness of dome maybe increased from 250 mm o 280 mm gradually in 1 m length.

7. DESIGN OF BOTTOM CIRCULAR BEAM (B2)

The ring beam B_2 receives an inward inclined thrust T_0 from conical dome and an outward thrust T_2 from bottom dome. The horizontal components are $T_0 \sin \phi_0$ and $T_2 \cos \phi_2$

They are acting in opposite direction. Therefore, net horizontal force on B_2

 $P = T_0 \sin \phi_0 - T_2 \cos \phi_2$

 $T_0 \sin \phi_0 < T_2 \cos \phi_2$

The dimensions of tank should be so adjusted that either P is zero or P is compression. The hoop force is given by

$$P_{\rm H} = P \times \frac{P_0}{2}$$

If b_2 is width and d_2 is depth of ring beam, the stress is given by;

 $P_{\rm H} = P \times \frac{P_0}{2} \times \frac{1}{bd}$ The vertical load per unit length is given by; $P_{\rm v} = T_0 \cos \phi_0 + T_2 \sin \phi_2$ Inward thrust from conical dome = $T_0 \sin \phi_0$

401774.5443^N/m

Outward thrust from bottom dome = $T_2 \cos \phi_2$ = 236165 N/m

Net inward thrust = 401774.5443 - 236165 = 165609.5443 N/mHoop compression in beam = $165609.5443 \times \frac{10}{2}$ = 828047.72

Assuming the size of the beam to be 600 mm $\times 1200$ mm

Hoop stress $=\frac{828047.72}{600 \times 1200} = 1.15 \text{ N/mm}^2$ (safe) Vertical load on beam, per meter run = $T_0 \cos \phi_0 +$ $T_2 \sin \phi_2 = 489970.8576 N$ Alternately vertical load = $w_2 + \frac{w_T}{\pi D_0} = 495188.43 \text{ N}$ Self wt = $0.6 \times 1.2 \times 1 \times 25000 = 18000 \text{ N/m}$ Therefore, the load on beam = w = 507970 N/mLet us provide the beam on 8 equally spaced column at a mean diameter of 10 m. Mean radius of curved beams R = 5 m $2\theta = 45 = \frac{\pi}{4}$ $\theta = 22.5 = \frac{\pi}{0}$ From table; $C_1 = 0.066$ $C_2 = 0.030$ $C_3 = 0.005$ $\phi_{\rm m} = 9.5^{\circ}$ w R²(2 θ) = 5077970 × 5² × $\frac{\pi}{4}$

IFERP

International Journal of Engineering Research in Mechanical and Civil Engineering

(IJERMCE)

Vol 2, Issue 7, July 2017

Maximum –ve B.M at support = $M_0 = C_1 w R^2(2\theta)$ = 658281.8654 Nm Maximum +ve B.M at support = $M_2 = C_2 w R^2(2\theta)$ = 299219.03 Nm Maximum torsional moment $M'_m = C_3 w R^2(2\theta)$ = 49869.8 Nm For M30 concrete $\sigma_{cbc} = 10 \text{ N/}_{mm^2}$ For HYSD bars $\sigma_{st} = 130 \frac{N}{mm^2}$ k = 0.41791 j = 0.86069 R = 1.79845 Required effective depth = $\sqrt{\frac{65824.86 \times 1000}{600}} = 781.05$ mm Howeverkeep total depth = 1200 mm from shear point of new Let d = 1140 mmMaximum shear force at support $F_0 = w R \theta$ =997396.7627 N S.F at any point is given by $F = w R (\theta - \phi)$ At $\phi = \phi_{\rm m}$; F = 576273.685 N BM at point of maximum torsional moment $(\emptyset = \emptyset_m = 9.5^\circ)$ is given by; $M_{o} = w R^{2} (\theta \sin \phi + \theta \cot \theta \cos \phi - 1)$ = 1632.83 N-m (sagging) = 1632.83 N-m (hogging) The torsional moment at any point is given by $M_{q}^{t} = w R^{2} (\theta \cos \phi - \theta \cot \theta \sin \phi - (\theta - \phi))$ At support $\emptyset = 0$; $M_0^t = w R^2(\theta - \emptyset)$ At midspan $\theta = \phi = 22.5 = \frac{\pi}{2}$ $M_{e}^{t} = w R^{2} \left(\theta \cos \phi - \theta \frac{\sin \phi}{\sin \phi}^{8} \cos \phi\right)$ We have following combination of BM and torsional moment; (a) At the support $M_o = 1632.83 \text{ N-m} (hogging); M_o^t = 0$ (b) At mid-span $M_e = 299221.03 \text{ Nm} (\text{sagging}); M_o^t = 0$ (c) At point of maximum torsion $(\phi = \phi_m = 9.5^\circ)$ $M_o = 1632.83 \text{ Nm}$ (hogging); $M_m^t = 49869.8 \text{ N-m}$ Main and longitudinal reinforcement (d) Section at point of maximum torsion $T = M_{max}^{t} = 49869.8 \text{ Nm}; M_{Q} = M = 1632.8 \text{ N-m}$ As per IS 456-2000 $M_{e1} = M + M_T$ $M_{T} = 88005.26 \text{ Nm}$ $M_{e1} = 1632.8 + 88005.26 = 89638.06 \text{ Nm}$ $A_{st1} = \frac{M_{eq}}{\sigma_{st} \times j \times d} = 690.63 \text{mm}^2$ No of 30mm Ø bars = $\frac{589.474}{\frac{\pi}{4} \times 30^2} \approx 1$

Provide a minimum of 2 bars Since $M < M_T$ $M_{e1} = M_T - M$ = 88005.26 - 1632.8= 86372.46 Nm

$$A_{st2} = \frac{86372.46}{130 \times 0.874 \times 1160} = 665.76 \text{ mm}^2$$

No of 25mm Ø bars $= \frac{665.76}{\frac{\pi}{4} \times 25^2} = 1.36 \approx 2$

Provide a minimum of 2 bars Thus at point of maximum torsion. Provide 2-15 mm Ø bars each at top and bottom

(b) Section at maximum hogging BM $M_0 = \frac{65828.863 \times 1000}{130 \times 0.874 \times 1160} = 5071.869 \text{ N-m}$ No of 30mm Ø bars $=\frac{5071}{\frac{\pi}{4} \times 30^2} \approx 8 \text{ bars}$

Hence provide 5 nos 30mm \emptyset bars in one layer and 3 nos 30mm \emptyset bars in the second layer.

They will be provided at top of the section, near support.

(c) Section at maximum sagging BM at mid-span

 $M_{0} = \frac{299219 \times 1000}{130 \times 0.874 \times 1160} = 2305.372 \text{ N-m}$

No of 30mm Ø bars $=\frac{2305}{\frac{\pi}{4} \times 30^2} \approx 4$ bars

Hence the scheme of reinforcement will be as follows $\frac{4}{3}$

At the support provide 5 nos 30mm \emptyset bars in one layer and 3 nos 30mm \emptyset bars in the second layer.

Continue upto section of maximum torsion i.e. at $\phi_m = 9.5^\circ = 0.116$ rad

at distance = $R\phi_m = 5 \times 0.116 = 0.83m$

 $L_d=52 \ \phi = 1560 \ mm$ from support

At this point discontinuous 4 bars while continue remaining 4 bars

Similarly provide 4 bars of 25mm \emptyset at the bottom throughout the length.

8. TRANSVERSE REINFORCEMENT

(a) At the point of maximum torsional moment At the point of maximum torsion V= 576273.66 N $V_e = V + 1.6 \frac{T}{b}$ =576273.66 + $\frac{1.6 \times 49869.5}{0.6}$ = 709259.78 N $T_{ve} = \frac{Ve}{bd} = 1.019 \frac{N}{mm^2}$ This is less than t_{cmax} $\frac{100 A}{bd} = = 0.406$ $T_c = 0.35 \frac{N}{mm^2}$

(IJERMCE)

Vol 2, Issue 7, July 2017

Since $T_c < T_{ve}$ shear Reinforcement is necessary The area of cross section A_{sv} of the stirrups is given by

$$\frac{A_{sv} \sigma_{sv} d_1}{\frac{V}{2.5} + \frac{T}{b_1}} = s_v$$

$$d_1 = 1200 - 40 \times 2 - 25 = 1095$$

$$b_1 = 600 - 40 \times 2 - 25 = 495$$

$$\frac{A_{sv}}{s_v} = 1.404$$

$$\frac{A_{sv}}{s_v} \ge \frac{\text{Tve} - \text{Tc}}{\sigma_{sv}}$$

$$= 2.676$$
Hence $\frac{A_{sv}}{s_v} = 2.676$
Using 12 mm diameter 4legged stirrups
$$A_{sv} = 4 \times 113 = 452 \text{mm}^2$$

Or

$$A_{sv} = \frac{452}{2.676}$$

= 168 mm²

However the Spacing should not exceed least of Spacing should not exceed x_1 , 300, $\frac{x_1+y_1}{4}$

 $x_{1} = 495 + 25 + 12 = 532 \text{ mm}$ $y_{1} = 1095 + 25 + 12 = 1032 \text{ mm}$ $\frac{x_{1} + y_{1}}{4} = 391 \text{mm}$

Hence provide 12mm diameter stirrups @ 160 mm c/c

(b) At the point of maximum shear (supports) At supports F_0 = 997396.7629N T_c = 0.38 $T_c < T_v$ V_c = 0.38× 600 × 1600 = 264480N

 $V_s = F_o - V_c = 732916.762N$

The Spacing of 10mm diameter 4 legged Stirrups having A_{sv} = 314mm²

$$\frac{A_{sv} \sigma_{sv} d_1}{V_s} = s_v$$

= 74.546 mm.....is to small Hence use 12mm diameter 4 legged Stirrups having $Asv = 452.39mm^2$ $S_v = \frac{150 \times 452.39 \times 1160}{732916.762} = 107 mm$ Provide spacing 100 mm (c)At mid-span SF is zero hence provide nominal shear reinforcement given by $\frac{A_{sv}}{bs_v} \ge \frac{0.4}{f_v}$ $\frac{A_{sv}}{s_v} = 0.578$ Choosing 10mm diameter 4 legged stirrups $A_{sv} = 314 \text{ mm}^2$ $s_v = \frac{314}{0.578} = 543 \text{ mm}$ Maximum permissible spacing = 0.75d = 0.75× 1160 = 870 mmOr 300 mm
Hence provide 10mm 4 legged stirrups @ 300 mm
C/c
Side face reinforcement
Since Depth>450mm &Torsional moment present
Provide side face reinforcement of 0.1% $A_{sl} = \frac{0.1}{100} \times (600 \times 1200) = 720 \text{ mm}^2$ Provide 3-16mm diameter bars on each face having $A_{sl} = 6 \times 201 = 1206 \text{ mm}^2$

9. DESIGN OF COLUMN

(a) Vertical loads on column 1. Weight of water = $W_w + W_0 = 10459794.66N$ 2. Weight of tank = (Weight of top dome +cylindrical walls) + (Weight of conical dome) + (bottom dome) + (Bottom ring beam) Weight of top dome + cylindrical wall=2820525.5N Weight of conical dome = 1571287.201N Weight of bottom dome = 540982NWeight of bottom ring beam = $18000 \times \pi \times 10 = 565487$ N Total weight on the tank = 5498281NTotal superimposed load = 5498281+10459794.66=15958075N Load per column = $\frac{15958075}{8} = 1$ 994759.375N Let the column be 400mm diameter = $\frac{\pi}{4} \times 0.7^2 \times$ 4200 = 9620 N Let the brace be of 300 mm \times 600 mm Length of each brace (L) L = R, $R \frac{\sin = \frac{\pi}{n}}{\cos = \frac{\pi}{n}} = 3.83 \text{ m}$ Clear length of each brace = 3.83 - 0.7 = 3.13 m Weight of each brace = $0.3 \times 0.6 \times 3.13 \times 2800 =$ 14085 N Total height of structure = 6 + 1.2 + 2 + 5 + 1.9=26.1 m Terrain category 2 Location: near Chennai $V_{\rm b} = 50 \ m/_{S}$ K = 0.9 (Table 1) IS 875 part 3

Mean probable design life = 25 years

Vol 2, Issue 7, July 2017

Basic Wind speed(V_b) = 50 $m/_S$ $k_1 = 0.9$ Table No 2. k_2 Terrain category 2 Height = 26.1m 20 1.07 26.1 k_2 30 1.12 $K_2 = 1.101$ $k_3 = 1$ (Plain topography) $V_z = k_1 k_2 k_3 V_b^2$ $V_2 \approx 50$

$$P_2 = 0.6V_z^2 = 1500^N/m^2$$

Let us take a shape factor of 0.7 for circular section in plan

Wind load on tank dome and ring beam

Wind load = $(5 \times 15.4) + (15.2 \times \frac{2}{3} \times 1.9) + (2 \times 13.2) + (10.6 \times 1.23) + (1500 \times 0.7) = 142142N.$

This may be assumed to act at about 5.7m above bottom of ring beam

It acts at C.G of projected area. In this case it is about 5.7m from bottom of ring beam B_2

Wind load on each panel of 4m height = $(4 \times 0.7 \times 8) \times 1500 \times 0.7 + (0.6 \times 10.6) \times 1500$ = 33060 N

Wind load at top panel = $\frac{1}{2} \times 23520 = 11760$ N The points of contraflexure

 o_1, o_2, o_3 and o_4 are assumed to be at mid height of each panel

The shear force Q_w and moments M_w are due to wind at these planes are given below

U	t diebe planes die Breen selsti					
$Q_w(N)$	M _w (N/m)					
142142+1176	142142×7.7+117					
0=153902	60×2=1118013.4					
142142+1176	142142×11.7+11					
0+33060=18696	760×6+33060×2=1					
2	799741.4					
142142+1176	142142×15.7+11					
0+33060+33060	760×10+33060×8=					
=220022	2613709.4					
142142+1176	142142×20.2+11					
0+33060+33060	760×14.5+33060×(
+33060=253082	10.5-					
	6.5+2.5)=3256678.4					
	142142+1176 0=153902 142142+1176 0+33060=18696 2 142142+1176 0+33060+33060 =220022 142142+1176 0+33060+33060					

The axial thrust $V_{max} = \frac{4M_w}{nV_0}$ (n=8 columns) = 0.05 $\ensuremath{\mathsf{M}_{\mathrm{w}}}$ in the farther leeward column, the shear force

 $S_{max} = \frac{2Q_w}{n} = 0.25 M_w$ in the farthest column, leeward shear force(S_{max})

In column on bending axis at crown of the above levels and bending moment $M=S_{max}\times \frac{h}{2}$ in column is tabulated

Lev	V _{max}	S _{max}	M(N	
el			m)	
04	55900	3847	7695	
		5.5	7	
03	89987.0	4674	9348	
	7	0.5	1	
02	130685.	5500	1100	
	5	5.5	11	
0 ₁	162833.	6327	1265	
	92	0.5	41	

The critical combination for various panel of the column are tabulated below

Table Vii Forces And Moments Calculations

Р	Farthest	leeward	Column	on
anel	column		bending axis	;
	Axial	V _{max}	Axial	M(N
	load (N)		load (N)	/m)
04	203324	55900	203324	769
	0		0	57
03	208580	89987	208580	934
	4.375	.07	4.375	81
02	21383.6	13065	213836	110
	9	.5	9	11
0 ₁	220055	16283	220055	126
	4.311	3.92	4.325	5001

Use M30 concrete for which

$$\sigma_{\rm cbc} = 10^{N} / mm^2$$

For steel.

$$\sigma_{\rm st} = 230 \, {}^{N}/_{mm^2}$$

 $\sigma_{cc} = 8 N / mm^2$

All the three values can be increased by 33.33% when taking wind into account.

Diameter of column = 700 mm

(IJERMCE)

Vol 2, Issue 7, July 2017

Use 12 bars of 30mm Ø at an effective cover of 40mm

 $A_{sc} = \frac{\pi}{4} \times 30^{2} \times 12 = 8482 \text{ mm}^{2}$ Equivalent area of column = A_c+ (m-1) A_{sc}= 455525.607 M = $\frac{280}{3 \times 10}$ = 9.333 Equivalent moment of inertia = $\frac{\pi}{64} \times d^{4}$ + (m -1) × A_{sc} $\frac{d'^{2}}{8}$ D = 700mm d' = 700 - 2 × 40 = 620 I_c= 1518086 × 10¹⁰ mm⁴ A study direct stress in column = π'

Actual direct stress in column = σ'_{cc} = $\frac{126541 \times 10^3}{1.578086 \times 10^{10}} \times 350 = 2.80 \frac{N}{mm^2}$

For safety of column, we have the condition

$$\frac{\sigma_{\rm cc}}{\sigma_{\rm cc}} + \frac{\sigma_{\rm cbc}}{\sigma_{\rm cbc}} \le 1$$

$$= 0.66289 \le 1$$

Hence safe

Use 10mmØ wire rings of 250mm c/c to tie up the main reinforcement.

Since column are 700mm \emptyset increase the width of B₂beam 600 mm to 700 mm

Check for seismic effect For empty tank = 5498281 N For tank full = 15958075 N

For column 1

According to revised classification of earthquake zone, Madras comes under zone III (earlier to 2002 it was zone II (zone II and zone I are merged) after 2002)

Therefore, Zone III IS 1893-2002 Stiffness of column in a bay

$$I_{cc} = \frac{121}{L^3}$$

As it is the case of circular group of column Young's modulus

$$E = 5000\sqrt{f_{ck}} = 27386.128^{\text{N}}/\text{mm}^2$$
$$I_c = 1.578080 \times 10^{10} \text{ mm}^4$$

L= 4

(i.e; the distance between two braces and a panel) $k_c = \frac{12 \times 27386.125 \times 1.518086 \times 10^{10}}{10000}$

$$= \frac{4000^3}{= 81033.12181} \frac{N}{mm}$$

Stiffness of 8 column $\sum k_c = 8 \times 81033.12182$ $\sum k_c = 648264.98$ Neglecting effect of bracing on stiffness $\frac{1}{k} = \sum \frac{1}{k}$ When k=1,Fundamental= $2\pi \sqrt{\frac{w}{g \times k}} = 0.3147$ sec

$$\frac{S_a}{g} = 0.2 \text{ from fig. 2, IS } 1893 - 1980 \text{ pg. 18}$$

From IS 1893
$$A_n = \frac{zIS_a}{2Rg} \text{ for zone III } z = 0.16, I = 1, R = 2.50$$

 $A_n = 6.4 \times 10^{-3}$ Force due to earthquake F_{eh} $F_{eh1} = mass \times acceleration = 102131.68N$ $\sum M = Due$ to wind = 253082> F_{eh} Therefore no need to consider earthquake in design of columns.

10. DESIGN OF BRACINGS

$$\frac{m_1}{\sin\left(\theta + \frac{\pi}{n}\right)} = \frac{m_2}{\sin\left(\theta - \frac{\pi}{n}\right)} = \frac{M}{\sin\left(\frac{2\pi}{n}\right)}$$
Hence, $m_1 = \frac{M}{\sin\left(\frac{2\pi}{n}\right)} \sin\left(\theta + \frac{\pi}{n}\right)$
And, $m_2 = \frac{M}{\sin\left(\frac{2\pi}{n}\right)} \sin\left(\theta - \frac{\pi}{n}\right)$
But, $M = S_1 \times \frac{h_1}{2} + S_2 \times \frac{h_2}{2}$,
 $\therefore M = \frac{Q_{w1} \cdot h_1 + Q_{w2} \cdot h_2}{n} \cos^2\theta$

Where, Q_{w1} and Q_{w2} are the shear at the equivalent cylinder, at the point of contraflexure. Substituting the value of M in m_1 and m_2 , we get

$$m_1 = \frac{Q_{w1} \cdot h_1 + Q_{w2} \cdot h_2}{n \sin \frac{2\pi}{n}} \cos^2 \theta \cdot \sin \left(\theta + \frac{\pi}{n}\right)$$

For m_1 to be maximum, differentiate it with respect to θ and equal it to zero.

$$\therefore \frac{\mathrm{d}}{\mathrm{dx}} \left[\cos^2 \theta . \sin \left(\theta + \frac{\pi}{n} \right) \right] = 0$$

or

$$\tan\left(\theta + \frac{\pi}{n}\right) = \frac{1}{2}\cos\theta$$
 Eqn 5.12.1
Solving the above, θ can be found.
 $m'_{1} = \frac{M'}{(2\pi)}\sin\left(\theta - \frac{3\pi}{2}\right)$

$$\sin\left(\frac{1}{n}\right) \qquad \text{if } f$$
Where $M' = \text{Joint moment at joint } A = \frac{Q_{w1} \cdot h_1 + Q_{w2} \cdot h_2}{2\pi} \cos^2 \theta \left(\theta - \frac{2\pi}{2}\right)$

Vol 2, Issue 7, July 2017

$$\mathbf{m}_{1}^{'} = \frac{\mathbf{Q}_{w1} \cdot \mathbf{h}_{1} + \mathbf{Q}_{w2} \cdot \mathbf{h}_{2}}{\operatorname{nsin} \frac{2\pi}{n}} \cos^{2} \left(\theta - \frac{2\pi}{n}\right) \cdot \sin \left(\theta - \frac{3\pi}{n}\right)$$

If L is the horizontal length of brace AB, shear force in it is given by:

$$\begin{split} S_{b} &= \frac{m_{1} - m_{1}}{L} \times \\ Or \quad S_{b} &= -\frac{1}{L} \frac{Q_{w1} \cdot h_{1} + Q_{w2} \cdot h_{2}}{n \sin \frac{2\pi}{n}} \cos^{2}\theta \cdot \sin\left(\theta + \frac{\pi}{n}\right) - \\ \cos^{2}\left(\theta - \frac{2\pi}{n}\right) \cdot \sin\left(\theta - \frac{3\pi}{n}\right) \end{split}$$

Differentiating the above for maximum value, we get $\theta = \frac{\pi}{n}$. The angle at B₁ (fig...) will then be = $\theta - \frac{\pi}{n} = \frac{\pi}{n} - \frac{\pi}{n} = \text{zero}$

Hence, maximum shear force in a brace occurs when the wind blows parallel to it.

$$\therefore (S_{b})_{\max} = \frac{Q_{w1} \cdot h_{1} + Q_{w2} \cdot h_{2}}{Lnsin\frac{2\pi}{n}} \times \left[\cos^{2}\frac{\pi}{n}sin\frac{2\pi}{n} + \cos^{2}\frac{\pi}{n}sin\frac{2\pi}{n}\right]$$

$$= \frac{Q_{w1} \cdot h_{1} + Q_{w2} \cdot h_{2}}{Lnsin\frac{2\pi}{n}} \times \left(2\cos^{2}\frac{\pi}{n}sin\frac{2\pi}{n}\right)$$

The bending moment M₁ in brace is given by

$$\tan\left(\theta + \frac{\pi}{8}\right) = \frac{1}{2}\cot\theta$$
Solving graphically we get $\theta = 24.8$,

$$M_{1max} = \frac{Q_{w1}h_1 + Q_{w2}h_2}{n\sin\frac{2\pi}{n}}\cos\theta^2 \times \sin(\theta + \frac{\pi}{n})$$
For the lowest junction C
 $h_1 = 5m, h_2 = 4m$
 $M_{1max} = 255394.186Nm$

The maximum shear force (S_b) in brace is $\frac{Q_{w1}h_1 + Q_{w2}h_2}{n \sin^{2\pi}_{n}} \cos^{2\theta} \times \sin(\theta + \frac{\pi}{n})$

 $S_{bmax} == 116199.0841N$ Calculation of length of brace (L) Each angle of polygon = (No. of sides - 2) × 180⁰ 8 columns forms octagon n=8 Each angle = (8 - 2) × 180⁰ = 135⁰ tan 67.5 = $\frac{L_1}{5.15 - L_1}$ $L_1 = 3.64163$ $5.15 - L_1 = 1.51$ $L = \sqrt{1.57^2 + +3.6416^2} = 3.94m$ For $\theta = \frac{\pi}{8}$ the value of m₁

$$(((m_1))_{\theta=\frac{\pi}{n}} = \frac{Q_{w1}h_1 + Q_{w2}h_2}{n\sin\frac{2\pi}{n}}\cos\frac{\pi^2}{n} \times \sin(\frac{\pi}{8} + \frac{\pi}{8})$$

= 228912.1366 Twisting moment at $\theta = \frac{\pi}{8}$ is $M_t = 0.05m_1$

 $0.05 \times 228912.1366 = 11445.60683 \text{m}$

Thus the brace will be subjected to the critical combination of maximum shear force and a twisting moment M_t when the wind blows parallel to it (i.e; $\theta = \frac{\pi}{2}$)

For M30 concrete
$$c=\sigma_{cbc} = 10 \frac{N}{mm^2}$$

 $\sigma_{st} = 230 \frac{N}{mm^2}$
 $k = 0.28865$
 $k = 0.9038$

$$R = \frac{1}{2} \times 0.9038 \times 0.28865 \times 10 = 1.30441$$

Equating the moment of area at NA

$$\frac{1}{2} \times b \times (0.288d)^2 + (9.33 - 1)$$

 \times pbd(0.288d - 0.1d)

From which $p = 8.168 \times 10^{-3}$

% p = 0.8168 % Since the brace is subjected to both BM and TM we have

$$\begin{split} M_{eq} &= M_T + M \\ M &= BM = (M_1)_{max} = 255394.19 \\ M_T &= \frac{T}{1.7} \bigg[1 + \frac{D}{B} \bigg] \text{ where } T = M^t = 11445.607 \end{split}$$

 $M_{eq} = 277836.5523$ Nm

In order to find the depth of section equate M.R of section to external moment

$$b \times x_a \times \frac{c}{2} \left(d - \frac{x_a}{2} \right) + (m - 1)A_{sc} \times c' \times (d - d'_c)$$
$$= M_{eq}$$

c = (increase by
$$33.33\%$$
) = $1.333 \times 10 = 13.33$

According to IS 456 modified modular ratio of steel in compression zone of doubly reinforced section is 1.5m

$$m' = 1.5m$$

$$= 1.5 \times 9.33$$

$$= 13.99$$

$$\cong 14$$

$$c' = Compression at steel level$$

$$= 13.33 \times \frac{(0.288-0.1)d}{0.288d}$$

$$= 8.7035 \text{ N/mm^2}$$
Substituting the values in the above equation d = 600.2139 mm

Vol 2, Issue 7, July 2017

Adopt D = 700 mm so that c = 700 - 25 - 125=662.5 mm $A_{st} = p \times b \times D = 1715.07 \text{ mm}^2$ No. of 25 mm bars $=\frac{1715}{\frac{\pi}{4} \times 25^2} = 3.49377$ \cong 4 nos. Provide 4 Nos. of 20 mm Ø bars each at top and bottom $100\frac{A_s}{bD} = 0.935\%$ Maximum shear = 116199.057N $V_e = V + 1.6 \frac{T}{b}$ = 177242.3N $T_{ve} = 0.84450 Mpa$ Tve=Tc,max $T_c = 0.37 + (18.5 \times 0.04/25)$ = 0.4 %Hence Transverse reinforcement is necessary $\frac{A_{sv}\;\sigma_{sv}d_1}{\frac{V}{2.5}+\frac{T}{b_1}}$ $b_1 = 300-25 \times 2 - 25 = 225$ $d_1 = 700 - 25 \times 2 - 25 = 625$ using 12 mm diameter 2 legged stirrups $A_{sv} = 2 \times \frac{\pi}{4} \times 12^2$ $= 226 \text{mm}^2$ $\frac{A_{sv}}{2} = 0.847069$ Minimum Reinforcement Tve – Tc =0.57913= 0.84707 $s_v = 579.496 \text{ mm}$ Spacing should not exceed x_1 , 300, $\frac{x_1+y_1}{4}$ $x_{1} = 225 + 25 + 12 = 272 \text{ mm}$ $y_1 = 625 + 25 + 12 = 672 \text{ mm}$ $\frac{x_1 + y_1}{2} = 236 \text{ mm}$ Hence provide 12mm diameter stirrups @ 230 mm c/c D>450mm, hence provide side face reinforcement of 0.1% $A_{sl} = 210 \text{ mm}^2$

Provide 2-10mm diameter at each face giving total A_{sl} = 44 × 78.5 = 314 mm²

Provide $300 \text{ mm} \times 300 \text{ mm}$ haunches at the junction of braces with columns & reinforce it with 10 mm diameter bars.

11.DESIGN OF RAFT FOUNDATION Vertical load from filled tank and column = $2200554.375 \times 8 = 17604435 \text{ N}$ Weight of water = 10459794.66Vertical load on empty tank and column = 17604435 - 1045979 =7144640.34 N V_{max} due to wind load = 162833.9 × 8 = 1302671.2 N which is less than 33.33% if the super imposed load $=\left(\frac{33.33}{100} \times 10454794.7\right) = 3486598.22 \text{ N}$ Assume Self weight etc. = 10% = 1760443.5 N Total load = $1.1 \times 17104435 = 19364878.5$ N Area of foundation equation $=\frac{17364878.5}{180000}$ = 107.58 m² Circumference of circular column = $\pi \times 10 = 31.42$ m {i.e. $(10.6 - 2 \times 0.3 = 10 \text{ m})$ } 107.57 Width of foundation required 31.42 = 3.424 m Take width = 3.64 mHence, inner diameter = 10 - 3.64= 6.36 m Outer diameter = 10 + 3.64 = 13.64 m Area of annular raft = $\frac{\pi}{4} \times (13.64^2 - 6.36^2)$ $= 114.35 \text{ m}^2$ Moment of inertia of slab @ diameter $\frac{\pi}{64}$ × (13.64² – 6.36²) = 1618.8 m⁴ Total load on tank empty = 7144640-34 + 1760448.5= 8905083.8450 N Stabilizing moment $= 8905083.84 \times \frac{13.84}{2}$ = 60732671.8 N-m Let the base of raft be 2m below ground level Therefore M_w at base = 142142 ×11760 × 33060 × (14 + 10 + 6)= 44572245.40 N-m Hence the soil pressure @ edges along diameter are Tank full =188610.2864 $^{\text{N}}/_{\text{m}^2}$ or 150084.511 (a) $^{\rm N}/_{\rm m^2}$ Tank empty = 97138.54 N/m^2 or 58612.8211(b)

Under the wind load the allowable bearing capacity is increased to $180 \times 1.333 = 240 \text{ KN/m}^2$

Which is greater than the maximum soil pressure = 188.610 KN/m^2

Hence the foundation raft will be designed only for super imposed load

N/m²

ISSN (Online) 2456-1290

International Journal of Engineering Research in Mechanical and Civil Engineering

(IJERMCE)

Vol 2, Issue 7, July 2017

A ring beam of 100 mm width may be provided. The foundation will be designed for an average pressure.

$$p = \frac{17604435}{114.35} = 153952.2081 \text{ N/m^2}$$

The overhang "x" of raft slab = $\frac{1}{2} \times \{(13.64 - 6.36) - 0.7\} = 1.47 \text{ m}$ B.M = 166337.6633 N-m S.F = 153952.2 × 1.47 = 226309.746 N

d = 357.98 mm

Provide 400 mm thick slab with effective depth = 340 mm

Provide total depth of 250 mm at the edge

$$A_{st} = \frac{166337.66 \times 1000}{230 \times 0.9038 \times 360} = 2141.69 \text{ mm}^2$$

Spacing of 20 mm Ø bars = $\frac{1000 \times \frac{\pi}{4} \times 20^2}{2141.7}$ = 146.7 mm

Hence provide 20 mm Ø radial bars @ 140 mm $^{C}/_{C}$ at bottom of slab

Area of distribution steel = $\frac{0.15}{100} \times 1000 \times 400$ = 600 mm² Spacing of 10 mm Ø bars = $\frac{1000 \times 78.5}{600}$ = 130.5 mm \cong 130 mm

Hence provide 10 mm \emptyset bars @ 130 mm c/c at supports. Increase spacing as 200 mm @ edges.

VI – CONCLUSION

Elevated water tanks provide head for supply of water. When water has to be pumped into the distribution system at high heads without any pumps for supply however pumps are necessary for pumping only till tank is filled. Once it is stored in tank the gravity creates the pressure for free, unlike pumps. We need pressurized water to fledge and make taps eject water at an appropriate rate. Elevated tanks do not require continuous operation of pump, as it will not affect the distribution system since the pressure is maintained by gravity. Strategic location of tank can equalize water pressure in the distribution system

The pressure of water flowing out of an elevated tank depends upon the depth of the water in tank .A nearly empty tank probably will not provide enough pressure while a completely full tank may provide too much pressure the optimal pressure is achieved at only one depth .While elevated tank provide can provide the best pressure, they are far more expensive and generally, it is used where supply is high demand

Elevated circular water tanks with large capacity and flat bottom needs large reinforcement at the ring beams. To overcome this in intze tank, by providing a conical bottom and another spherical bottom reduces the stresses in ring beams. Intze tank is more economical for high capacity reducing the steel requirement.

VII – SUMMARY

An effort has been taken to provide a design of circular overhead water tank which is more economical, simple and having a better life span with the help of IS 3370-2009 in WORKING STATE METHOD.

Design of water tank manually is tedious job, in this project circular INTZE WATER TANK is designed using membrane analysis separate continuity analysis is not done Calculations for continuity effect can be done by stiffness methods but it makes the process very complicated .continuity is taken in to account by introducing sufficient steel at joints.

FUTURE SCOPE

From the review of all the papers, it has been concluded that most of the authors have designed the circular water tank with the help of SAP2000, C++ & STAADPRO software. So, the attempt is to be made to design the overhead circular water tank with the help of ETABS software. A reinforced concrete member of liquid retaining structure is designed on the usual principles ignoring tensile resistance of concrete in bending

REFERENCES

1. AsatiAnkush N., KaduMahendra S. (2014), "Seismic investigation of RC elevated water tank for different types of staging patterns",4-7

2. Bhandari M, Singh Karan Deep (2014), "Comparative study of design of water tank", 231-238

3. Bhandari M, Singh Karan Deep (2014), "Economic design of water tank of different shapes"45-53

ISSN (Online) 2456-1290 International Journal of Engineering Research in Mechanical and Civil Engineering (IJERMCE)

Vol 2, Issue 7, July 2017

4. Dixit B Patel. Patel. Chirag. N. (2016), "A review on overhead water tank staging considering Fluid-Structure-Soil Interaction" 116-120

5. Dona Rose K J, Sreekumar M, Anumod A S (2015), "A study of overhead water tanks subjected to dynamic loads"344-348

J. Yogeshwarana, C.Pavithra,(2015), ۲۲ 6. Behaviour of an elevated RC tank subjected to various earthquake responses", 440-444

7. KagdelwarBhagyashree Prakash, Patil A. V. (2016), "Economic design of RC elevated water tanks by using IS 3370 and its revision is 3370 (2009)", 517-527

8. Young-MyungYang, Ji-Hoon Kim, Heung-SeokSeo, Kangwon Lee, Ihn-Soo Yoon (2006), " Development of the world's largest above-ground full containment Lng storage tank"

MARCHES