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 

Abstract—Internet of Things (IoT) is an increasingly popular 

technological trend. The operation of IoT needs a strong data-

handling capacity, where most of the data is sensor data. 

Limitations associated with measurement, delays in data updating, 

and/or the need to preserve the privacy of data can result in the 

sensor data being uncertain. Thus, one key challenge is “How do 

we ensure the privacy of data collected from IoT devices, 

particularly uncertain data, that are being outsourced to the cloud 

for analysis, storage and archival?”. Searchable encryption (SE) 

scheme is a promising technique that allows the searching over 

encrypted (uncertain) data stored offshore. In this paper, we 

propose a secure range search for encrypted data from IoT 

devices. Specifically, we use homomorphic and order-preserving 

encryption (OPE) to encrypt data published by the data owners. 

We then use the k-dimensional tree (KD-tree) to build the data 

index. Our scheme is designed to ensure the privacy of the dataset, 

without affecting the efficiency of keyword search on the 

(encrypted) dataset. We also demonstrate that our scheme can 

preserve both data and query privacy, as well as evaluating its 

performance to demonstrate efficiency. 

 
Index Terms—Internet of Things, Secure range search, sensor 

data, uncertain data, range search. 

 

I. INTRODUCTION 

NTERNET of Things (IoT) devices, such as sensing devices 

(e.g. Radio-Frequency Identification – RFID, infrared sensor, 

global positioning system – GPS, and laser scanners), can be 

used to facilitate intelligent identification, positioning, tracking, 

monitoring and management. Such data (also referred to as 

sensor data) can be random and incomplete in nature, partly due 

to limitations of deployed measuring instruments or delays in 

data updating. In other words, the sensor data can be imprecise 

and uncertain. The ability to manage uncertain data efficiently 

is crucial in those working with databases, etc. Thus, how to 

efficiently process uncertain data is a topic of ongoing interest 

to researchers [1, 2].  

Range search is a fundamental query performed on uncertain 

data, whose purpose is to retrieve data within the query range. 

One example application of range search in IoT is in agriculture 
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[2], where farmers can install sensors in the field to monitor 

temperature changes, relative humidity and pollution level 

information. Each sensor obtains a set of sensor data 

1{ ,..., }nU u u= , where U  represents a sensor object, iu

represents an instance, and [1, ]i nÎ . Hence, each object 

contains three data values and is modeled as a three-

dimensional object (Fig. 1).  

There are three sensor objects{ , , }A B C , due to factors such 

as equipment failure and noise. The received sensor objects 

may be uncertain. As such, each object is represented by an 

uncertain region rA  (shaded areas in Fig. 1) and the 

probabilistic density function (PDF) ( .A pdf in Fig. 1). This 

implies that an object may appear in an uncertain region with 

the probabilities described by its PDF. Farmers cannot obtain 

precise data in practice. However, using range search, they can 

analyze and determine which range has abnormal conditions 

(e.g., fire hazard, waterlogging, and insect attacks). It is an 

effective way for them to have a real-time understanding of the 

conditions in the fields. 
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Fig. 1 Range search over sensor data 

 

Existing research on range searches over multidimensional 

uncertain data with an arbitrary PDF [1, 3, 4] mainly follow the 

filtering and verification paradigm. By leveraging an effective 

index structure, some objects can be filtered at a threshold value 

without calculating their appearance probabilities in detail. 

Also, existing research generally focus on plaintext and does 

not consider data interaction and sharing. 

An important medium for sensor data interaction and sharing 

in the IoT is the cloud, due to benefits that could be realized 

such as cost efficiency, high-capacity and the reduction of 

overhead. For example, data owners can potentially benefit 
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from the outsourcing of the database to the cloud. A tradeoff is 

data owners ceding over the control of the query process. This 

clearly has security implications.  It is also not safe for data 

owners to upload plaintext data. Encrypting the data prior to 

outsourcing is an effective security measure, although a tradeoff 

is reduced data utility. For example, searching on encryption 

datasets will be inefficient and impractical.  

Searchable encryption (SE) schemes can be designed to 

search on encrypted data, such as the symmetric SE scheme of 

Song et al. [5] and the symmetric SE scheme in [6]. The SE 

schemes have been applied in a number of areas [7-9]. The 

uncertain and imprecise nature of IoT sensing data, however, 

complicate the design of efficient search schemes on such 

encrypted data.  

In this paper, we are motivated by the challenge in designing 

a secure range search scheme to support the queries of uncertain 

outsourced IoT data. In [10], for example, the authors used U-

Quadtree to organize the uncertain data in order to support the 

range search. They developed a cost model to build an effective 

quadtree. This tree would be unbalanced if the data in the 

dataset was uneven. The unbalanced tree would also incur 

significant storage and time overhead.  

To solve this problem, we apply a k-dimensional tree (KD-

tree) [11], or the binary space partitioning structure, to organize 

the sensor data. According to the data distribution, a KD-tree 

can split the dataset evenly and support an efficient range search. 

To support comparison and additive operations, we apply 

homomorphic and order-preserving encryption (OPE) 

encryption to encrypt the sensor data published by the data 

owners. This can be used to hide the access and search patterns 

and ensure data privacy. We use two cloud servers (C1 and C2) 

to support the range search process. Our scheme algorithm 

achieves a significant improvement in performance during a 

range search over the encrypted uncertain sensor data. 

We consider the contributions in this paper to be the new 

searchable encryption scheme designed to facilitate secure and 

fast range search over uncertain sensor data, using KD-tree, 

OPE and homomorphic encryption. In our scheme, we ensure 

the confidentiality of the dataset and the query, by hiding the 

search and access patterns.  

The rest of this paper is organized as follows. In Section Ⅱ, 

we introduce extant literature including related SE schemes, 

range search and data privacy. We then introduce the relevant 

background information (i.e. OPE, homomorphic encryption, 

KD-tree, uncertain sensor data) in Section Ⅲ. Section Ⅳ 

presents the model of our scheme, the algorithms for the range 

search and the security analysis. The experimental analysis is 

given in Section Ⅴ. Our conclusions are presented in Section Ⅵ. 

II. RELATED WORK 

As previously discussed, SE scheme enables data owners to 

search on their encrypted data, say in the cloud (more 

specifically, search the data over a ciphertext domain). Existing 

SE schemes can be categorized into those based on public key 

based cryptography [6, 12, 13], and those based on symmetric 

key based cryptography [5, 14, 15]. Song et al. [5] proposed the 

first symmetric SE scheme, but many other searchable 

encryption schemes were proposed afterwards [13, 16, 17]. 

These early works only support keyword search schemes, 

which are very simple in terms of functionality. As technologies 

advance, so does the complexity of data. For example, IoT data 

(e.g. sensor data), as well as the errors, or the limitations of the 

sensors, result in the obtained data being uncertain. However, 

early SE schemes are not capable of supporting searches over 

uncertain data. 

Uncertain data management [18, 19] has gained traction 

among researchers, particularly due to the many practical 

applications in various domains. Range search is an effective 

way to conduct data analysis, by enabling a quick search of the 

most relevant data. Not surprisingly, a number of range search 

schemes over plaintext uncertain data have been presented in 

the literature in recent years [1, 3, 4]. Most existing schemes 

use some indexing techniques to improve the retrieval 

performance. 

Common retrieval structures include R-tree [1, 3], U-tree [4], 

UI-tree [20], UP-index [21], Quadtree [10] and KD-tree [11]. 

The first four structures employ an “equality strategy”, that is, 

the same amount of resources in terms of the index space usage 

are allocated to each uncertain object. Consequently, they 

cannot effectively address different uncertain region sizes 

during the index construction process. To overcome such a 

limitation, the authors in [10] applied Quadtree to organize the 

uncertain data . Quadtree is a space partitioning tree data 

structure in which a d-dimensional space is recursively 

subdivided into 2d
 regions. In each iteration of the partitioning 

process, the space will be divided into 2d
 equal parts. Fig. 2 is 

an example of Quadtree. The data points are in a 2-dimendional 

space and the space is recursively divided into 4 regions. In Fig. 

2, the data points are uneven, which leads to some useless 

partitions. However, it will increase the space and time 

overhead. As discussed earlier, existing schemes only support 

range searching over plaintext uncertain data. In other words, 

such schemes are ineffective on encrypted uncertain data. 

 

 
Fig. 2 An example of Quadtree 

 

In this paper, we apply KD-tree, a binary space partitioning 

structure, to organize the uncertain sensor data. KD-tree is 

mainly used in multidimensional space data retrieval (e.g., 

range and nearest neighbor searches). It can achieve efficient 

retrievals by solving defects in other indexing structures. 

Because data from the diverse IoT devices (e.g., sensors) is 

uncertain, a range search over the encrypted data should support 

some basic operations. 

 Many existing efficient encryption primitives can support 
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different operations in the ciphertext domain. Paillier et al. [22], 

for example, proposed a homomorphic encryption scheme to 

support additions. OPE [23, 24] can evaluate comparisons. 

BGN (the abbreviation for the authors’ name) encryption [25], 

proposed by Boneh et al., or the more recent novel approach in 

[26], can support an unlimited number of additions and only one 

multiplication.  

In this paper, we apply OPE and homomorphic encryption 

simultaneously to encrypt the sensor data. Data owners obtain 

uncertain data from the IoT devices. They then use the KD-tree 

to organize the data. To ensure data privacy, they will use the 

OPE and homomorphic encryptions to encrypt the KD-tree and 

the dataset.  Such data can then be outsourced to the cloud. 

When users wish to perform a range search, they should encrypt 

the query and then send that query to the cloud. When the cloud 

receives the query, it will conduct a search over the KD-tree and 

return the encrypted results to the users. Users use their own 

secret key to decrypt the results and choose the results they 

want. The detailed algorithm will be presented in Section Ⅳ. 

III. PRELIMINARIES 

In this section, we revisit the homomorphic encryption [22], 

OPE [24] and KD-tree, prior to presenting the security 

definitions for our scheme. 

A. Homomorphic Encryption 

The homomorphic encryption system [22] is an additive 

homomorphic and probabilistic asymmetric encryption scheme, 

based on the higher-order residue class problem. It contains 

three stages, namely: key generation, encryption and 

decryption. 

Let pk  be the public key given by ( , )N g , where N  is the 

product of two large primes and g  is in 2N

*¢ . Let pkE  be the 

encryption function with public key pk  and skD  be the 

decryption function with secret key sk . Given plaintext 

, Na b Î ¢ , this system has the following properties: 

1) Homomorphic Addition  
2( ) ( )* ( ) modpk pk pkE a b E a E b N   

2) Homomorphic Multiplication 
2( * ) ( ) modb

pk pkE a b E a N  

The Paillier encryption system has been shown to be 

semantically secure, where an adversary cannot infer any 

information about the plaintext from the given ciphertexts. 

B. Order-Preserving Encryption (OPE) 

OPE [24] is a special type of encryption, where the orders of 

the encrypted data are the same as the orders of their plaintext. 

This property makes it possible to sort and rank the encrypted 

data without revealing the plaintext. The ideal security of OPE 

is defined with indistinguishability under Chosen-Plaintext 

Attacks (IND-CPA). It has been recently achieved by [23, 27]. 

Let pk  be the public key and pkE  be the encryption function. 

Given plaintext , Na b Î ¢ , OPE can insure that, if a b> , then 

( ) ( )pk pkE a E b> . 

C. KD-tree 

A KD-tree is a data structure for indexing k-dimensional 

point data distributed in a k-dimensional space. It can be 

considered a k-dimensional binary search tree [11]. It is also a 

good solution to the space partitioning problem. Every node in 

a KD-tree is a k-dimensional point. Every non-leaf node can be 

considered to implicitly generate a splitting hyperplane that 

divides the space into two parts. Points to the left of this 

hyperplane is represented by the left subtree of that node and 

the other hyperplane is represented by the right subtree.  

All nodes in the tree are associated with one of the k-

dimensions and the hyperplane of each dimension is 

perpendicular to that dimension’s axis. The first step is 

calculating the variance of each of these dimensions based on 

the points’ values. We choose the maximum value of the 

variances and define the corresponding dimension by the 

splitting hyperplane direction. The points will be sorted by the 

value of the dimension corresponding to the maximum value of 

the variances. For example, if the “x” axis is chosen for a 

particular split, all points in the subtree with a smaller “x” value 

than the node will be in the left subtree and all points with a 

larger “x” value will be in the right subtree. We can recursively 

run the methods to construct the KD-tree. Selecting the splitting 

hyperplane direction based on the variance can guarantee that 

all the points can be split uniformly. 

Fig. 3 is an example of a KD-tree, where the uncertain sensor 

object set is { , , }A B C , each object has five points (instances), 

and the points are in a 2-dimensional space. It has two splitting 

hyperplane directions: an x-axis and a y-axis. By calculating the 

variances of these two dimensions, we determine that the 

variance of the x-dimensional space is bigger. We set the 

splitting hyperplane direction as the x-axis, with the point (5, 

6.5) as the median point. The points with a smaller x value than 

“5” will be in the left subtree and the points with a larger x value 

than “5” will be in the right subtree. We should recursively 

construct the left and the right subtree until there is no point to 

be split. 

Fig. 3 (a) represents the partitioning of the space, and (b) 

represents the corresponding KD-tree. Each node consists of 

one instance and its corresponding range. 

D. Security definition 

The main security objective of our scheme is to preserve both 

data and query privacy from untrusted cloud servers, which can 

be informally explained as: 

 Data privacy: Given two encrypted datasets, 0D  and 1D , 

an adversary cannot distinguish between these two 

datasets. 

 Query privacy: Given two search tokens, 0Q  and 1Q , an 

adversary cannot distinguish between these two queries. 

The rigorous definitions of our data and query privacy, with 

indistinguishability under Chosen-Plaintext Attacks (IND-

CPA), and its corresponding leakage function, are presented in 

Section Ⅴ. 
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                                    (a)                                                                                                (b) 

Fig. 3 The construction of the KD-tree based on three uncertain sensor objects: A {[2,3] [5.5,4] [4,7] [3,6] [3.5,2]}, B {[2.5,1.5] [5,6.5] [7,1] [9,5.5] [8,4.5]} and 

C {[1,4] [4.5,5] [9,2.5] [8,8] [6,5.5]}. Each object has five instances and the probability of each instance is 0.2. 

 

IV. MODEL OF THE PROPOSED SCHEME 

In this section, we describe our proposed secure range search 

model and then briefly introduce the general process of our 

scheme. Then, we provide the definition of a range search over 

the encrypted sensor data. The algorithm will be presented in 

Section Ⅴ. 

A. Model of the scheme 

In this paper, our scheme consists of four entities: 1) data 

owner, 2) cloud server 1 (C1), 3) cloud server 2 (C2) and 4) 

user. The model is illustrated in Fig. 4. The model illustrates 

that the sensor object consists of a sensor object ID, a set of 

instances and the probability of each instance. Each instance is 

a d-dimensional with its own coordinate. The data owner has a 

collection of data sets to be outsourced to the cloud server in the 

encrypted form. To enable the searching capability over 

encrypted data, the data owner will first build an encrypted KD-

tree with the data sets. Then, the encrypted data sets and 

encrypted KD-tree will outsource to C1. When a user wants to 

do a range search, the user will encrypt the query and then send 

to C1. C1 and C2 will cooperate with each other to search over 

the encrypted KD-tree and then return the results to the user. 

Our secure range search scheme consists of the following six 

polynomial-time protocols: 

 GenKey(1l
) →{ , }OPE HEsk pk : Given a security parameter 

l , the data owner computes and outputs:  

OPEsk ←OPE.GenKey(1l
) and HEpk ←HE.GenKey(1l

), 

where HE denotes homomorphic encryption. 

 BuildTree() → G : Given an object set = 

1 2{ , ,..., }nU U U , each object U has m instances, denoted 

by 1 2{ , ,..., }mU u u u= . There are m n´  instances. This 

protocol uses all instances to construct a KD-tree. Each 

node consists of one instance and its corresponding range 

11 12 21 22 1 1{[ , ],[ , ],...,[ , ]}d dR r r r r r r= . The range is 

calculated based on the coordinate of the instance. 

 Enc ( , , )OPE HEsk pk G → *G : Given a secret key OPEsk , a 

public key HEpk  and a KD-tree G . In the following range 

search process, we should compare the value of the 

instances’ coordinates and conduct an additive operation 

on the probabilities. The data owner traverses the KD-tree 

to encrypt each node with: 

OPE.Enc 1 2([ , ,..., ])i i idD D D → 1 2[ , ,..., ]i i ideD eD eD  

OPE.Enc( 11 12 21 22 1 1{[ , ],[ , ],...,[ , ]}d dr r r r r r )→ eR  

to obtain each instance’s encrypted coordinate and the 

encrypted range, where 1 2[ , ,..., ]i i idD D D  is each 

dimension value of the instance i. The data owner then 

runs: 

HE.Enc ( )ipu → ipeu , 

to obtain each instance’s encrypted probability. The data 

owner outputs an encrypted KD-tree 
*G . 

 GenToken ( , , )OPE HE qsk pk r → qer : Given the secret key 

OPEsk , a range search 11 12 21 22{[ , ],[ , ],qr qr qr qr qr=

1 2...,[ , ]}d dqr qr  and a probabilistic threshold θ, where 

1 2[ , ]j jr r  denotes the range of the 
thj  dimension, 

1 j d£ £ . The user encrypts it as:  

OPE.Enc 11 12 21 22 1 2({[ , ],[ , ],...[ , ]})d dqr qr qr qr qr qr  

→ 11 12 21 22 1 2{[ , ],[ , ],...,[ , ]}d deqr eqr eqr eqr eqr eqr  

HE.Enc(θ)→ eq , 

         and outputs qer  as a search token. 

 Search 
*( , )qerG → qeU : Given the search token qer  and 

an encrypted KD-tree 
*G , C1 starts from the root node, 

and traverses 
*G  to calculate the upper and lower 

appearance probability of each object regarding qer  and 

sends these to C2. The detailed search process will be 

given in Section Ⅴ. The cloud servers cooperate with each 

other to output a sensor object set, which satisfies the 

search token. 

 Dec ( , , )qOPE HEsk pk eU → qrU : Given secret key OPEsk , 

public key HEsk  and the object set returned from the cloud 

server. The user runs this protocol to obtain the final 

sensor object set, which satisfies the probabilistic 

threshold q . 

A 

B 

C 
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B. Problem Definition 

In this subsection, we define uncertain sensor data. Table 1 

summarizes the notations frequently used throughout the paper. 

The uncertain sensor data (object) is represented by its 

possible points and the probability that it may appear at each 

point. All the points in the paper are in a d-dimensional 

numerical space. In particularly, an uncertain sensor object can 

be described either continuously or discretely. We will 

introduce these two conditions as follows. 
TABLE I 

Summary of notations 
Notation Definition 

U () Sensor objects (a set of sensor objects) 

eU Encrypted sensor object 

n Number of uncertain objects 

{[qr11, qr12],…,[qrd1,qrd2]} Range search region rq 

uip The probability of U appears at instance ui 

euip Encrypted probability of U appears at ui 

[Di1, Di2,…,Did] The coordinate of instance i 

{[r11,r12],…,[rd1,rd2]} The range of a node 

θ Probabilistic threshold 

P (U, rq) The appearance probability of U regarding rq 

eP (U, rq) Encrypted appearance probability regarding rq\ 

LP (U, rq) The lower bounds of P (U, rq) 

eLP (U, rq) Encrypted lower bounds of P (U, rq) 

UP (U, rq) The upper bound of P (U, rq) 

eUP (U, rq) Encrypted upper bound of P (U, rq) 

 

In the continuous case, a sensor object U  is described by its 

probability density function (PDF) .U pdf  and its uncertain 

region rU . . ( )U pdf x denotes the probability of U appearing 

at point x , yielding . ( ) 1
rx U
U pdf x dx

Î
=ò . Sometimes, the 

PDF of the sensor object may not be available, and hence, a 

sensor object is represented by a set of sampled points, which 

is the discrete case. A sensor object contains a set of instances 

(points) 1 2{ , ,..., }mU u u u= , ipu  denotes the probability of U 

appearing at instance iu  and 1pu U
u

Î
=å . 

For a point p  and a region r , p rÎ  means that r  contains 

p . For any two regions 1r  and 2r , 2 1r rÍ  if 1 2 1r r rÈ =  means 

1r  contains 2r . We say 1r overlaps 2r  if 2 1r rË  and 1 2r rÇ ¹ Æ

.  

For presentation simplicity, we concentrate on the discrete 

case in this paper. Nevertheless, all techniques developed in this 

paper can be applied to the continuous case. 

Below is the definition of a “probabilistic threshold range 

search”, which is equivalent to a “range search” in the rest of 

paper. 

Definition 1(Probabilistic Threshold Range Search). Given 

a set  of sensor objects and a user specified probabilistic 

threshold q , the probabilistic threshold range search retrieves 

all objects U Î  with ( , )qP U r q³  ( 0 1q£ £ ). 

In this paper, we concentrate on the problem of a 

probabilistic threshold range search over encrypted 

multidimensional sensor objects. We aim to develop an 

effective indexing structure to facilitate the range search 

process. 

V. RANGE SEARCH OVER ENCRYPTED SENSOR OBJECTS 

A. Main Idea 

As specified previously, the main process of our scheme can 

be summarized as follows: 

The data owner obtains the sensor dataset from the sensors, 

where the dataset contains n  uncertain sensor objects and each 

object contains m  instances. Each instance is a triplet 

( . , . , )pu o u D u , where .u o  denotes the object it belongs to, .u D  

denotes the coordinate of this instance, and pu  denotes the 

probability of this instance. The data owner constructs a KD-

tree based on the instances. Each node is a two-tuple ( . , . )u o u R , 

where u  denotes the instance in this node and 

11 12 21 22 1 1{[ , ],[ , ],...,[ , ]}d dR r r r r r r=  denotes the range of its area, 

as in Fig. 3 (b), where d denotes the d-dimensional space. The 

range of each node is calculated based on the coordinate of the 

instance n.u.D.  

OPE

Homomorphic

Encryption

Data Owner

Encrypted 

KD-tree

Users

Search TokenKD-tree 

Construction

OPE

Search Range

Encrypted Query

Epk(Range)

Encrypted Query

Threshold θ 

Cloud Server 1

Search

Search 

Result

Decryption

[3,5,7.5]

[6.5,9.5]

Cloud Server 2

Object set

The threshold θ

Result set
Own secret key

 
Fig. 4 The model of the secure range search over encrypted sensor data 



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 6 

The data owner runs the encryption function mentioned in 

Section Ⅳ to encrypt the KD-tree and output the encrypted KD-

tree 
*G , where the two-tuple of each node is denoted by 

( . , . )n eu n eR . The data owner then outsources the encrypted 

KD-tree 
*G to the C1. If a user wants to conduct a range search, 

then he/she should use the secret key of OPE to encrypt the 

query qr  and then send the encrypted search token qer  to C1. 

When C1 gets a search token, it will traverse 
*G to calculate 

the encrypted lower and upper bounds of the probability for all 

objects and then send it to C2. C2 decrypts these probabilities 

and compares them to the user’s probabilistic threshold q . It 

chooses the objects that satisfy the requirements. Then, C2 

encrypts the result object set and sends it to C1. C1 re-confirms 

the results and then sends the set to the user. The user decrypts 

the results to obtain the objects. During this time, C2 will follow 

the filtering-and-verification process to choose the objects that 

satisfy his/her requirements. A sensor U may be filtered in 

either of the following ways:  

1) U is pruned if ( , )qUP U r  is smaller than the given 

probabilistic threshold θ, or 

2) U is validated if ( , )qLP U r  is not less than θ, 

where ( , )qLP U r  and ( , )qUP U r  denote the lower and upper 

bounds of ( , )qP U r , respectively. Only the objects that survive 

the filtering phase need to be verified (i.e., explicitly computing 

( , )qP U r ). 

B. KD-tree based Range Search 

Theorem 1 indicates that we can derive ( , )qLP U r  and 

( , )qUP U r , based on the topological relationship between qr

and the range of each node. 

Theorem 1. Given a search token qer and an encrypted KD-tree 

*G , let N1 (N2) denote the node set contained (overlapped) by 

qer : 

( , ) . .q peLP U r n u eu= Õ , where 1.n eR NÎ  

( , ) . .q peUP U r n u eu= Õ , where 1 2.n eR N NÎ È  

Proof. Because the probability of each instance up is encrypted 

by a homomorphic encryption, we should use the property of 

homomorphic addition to calculate ( , )qeLP U r  and 

( , )qeUP U r . For any node n, we have . qn u erÎ  if the range of 

node n is contained by qer . Immediately, Dec( ( , )qeP U r ) ³

Dec( . . pn u euÕ ), where Dec() is the decryption function and 

1.n eR NÎ . Given a node n, if .n eR  is not contained or 

overlapped by qer , then we have qn erÏ . This implies Dec(

( , )qeP U r ) £ 1- Dec( . . pn u euÕ ), where 1 2.n eR N NÏ È . 

Because Dec( pu U
eu

ÎÕ ) = 1, we have Dec( ( , )qeP U r ) £  Dec(

. . pn u euÕ ), where 1 2.n eR N NÎ È . Therefore, the theorem 

holds. 

 

Example 1. In Fig. 3 (a), given a search region qr q, according 

to Theorem 1, only the area 1 is contained in qr  The area 2, 3, 

4, 5, 6, 7 and 8 is overlapped by qr . The range of each node and 

the search region qr  are encrypted by OPE, so we can also 

compare the range over the ciphertext. We can now obtain 

( , )qeLP C r = Enc(0.2), ( , )qeUP C r = Enc(0.2) × Enc(0.2) × 
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Enc(0.2) = Enc(0.6). When the user obtains the resulting set, 

he/she will decrypt it to obtain the objects’ ( , )qLP U r  and 

( , )qUP U r . This will then be compared with his/her own 

probabilistic threshold q . Consequently, C is pruned if θ = 0.8 

and C is validated if θ = 0.2. Hence, we need to verify C if 

θ = 0.4. 

Algorithm 1 details the range search following the filtering-

and-verification paradigm. Lines 3-14 for C1 traverse 
*G  to 

calculate each object’s ( , )qeLP U r  and ( , )qeUP U r  values. 

C1 sends the object set  to C2, who then uses HEsk  to decrypt 

( , )qeLP U r  and ( , )qeUP U r . 

According to Theorem 1, we arrive at the lower and upper 

bounds of the appearance probabilities of the objects. We can 

validate an object U if ( , )qLP U r q³  (line 18). We only need 

to verify the remaining objects set V, in which 

( , ) ( , )q qLP U r UP U rq³ ³  (line 21). C2 encrypts set V and 

sends it to C1, C1 calculates the ( , )qeP U r  value of each object 

in set V (lines 26-32). And then, C1 sends set V to C2. C2 

decrypts it and compares each object’s ( , )qP U r  with θ. The 

objects which ( , )qP U r q³  (line 36) will be added to the 

resulting set R. C2 encrypts the resulting set R and then sends it 

to C1. C1 will return R to the user. 

When the sensors obtain more data set, the KD-tree should 

be updated duly. If a little bit of data should be inserted to the 

KD-tree, the data owner can encrypt the data set and then 

upload it to C1. Each level of the KD-tree contains the splitting 

hyperplane direction. When C1 receives the encrypted data set, 

it will insert each data into 
*G . The process of inserting data 

can be summarized as follows: 

C1 traverses 
*G from the root node and compares the value 

on the corresponding splitting hyperplane direction. If the value 

is smaller than the root node, it should traverse its left node until 

the data can be inserted to a leaf node.  

The essence of the KD-tree is a balanced binary tree. 

Inserting plenty of the data will destroy the balance. So, the data 

owner should reconstruct the KD-tree with the old and new data 

if large volume of data will be updated.  

C. Security analysis 

Prior to analyzing the security of the proposed scheme, we 

will provide some necessary definitions. 

1) Concepts definition 

Leakage Function . In a searchable encryption scheme, a 

leakage function covers all the possible leakages revealed 

during the search process. The leakage function of a sensor 

object set  introduced by query qr , can be denoted as (, qr ). 

In our scheme, the leakage function contains an access 

pattern (i.e., the identifiers of the encrypted data that are 

retrieved for each query), search pattern (i.e., whether the same 

encrypted result is retrieved by the two different queries), and a 

path pattern (i.e., the path that the search algorithm traverses in 

the KD-tree). The security of the data and query privacy in our 

scheme is defined as follows: 

Definition 2 (IND-CPA Data Privacy) Let ∏ = (GenKey, 

BuildTree, Enc, GenToken, Search, Dec) be a probabilistic 

secure range search scheme over security parameter λ. We 

define a secure game between a challenger  and an adversary 

: 

Init:  submits two sensor datasets 0 and 1 with the same 

size and isomorphic tree structure 0 1G G; , where 0 = 

01 02 0{ , ,..., }nU U U , 1 = 11 12 1{ , ,..., }nU U U , for 1 i n£ £ , 01U , 

02U ,…, 0nU  and 11U , 12U ,…, 1nU  are all distinct, 0G

←BuildTree(0), and 1G ←BuildTree(1). 

Setup: Challenger  runs GenKey(1l
) to generate a public key 

pk  and a secret key sk . It keeps these keys private. 

Phase 1: Adversary  adaptively submits a few requests. Each 

request is one of the two following types: 

1) Ciphertext request: On the 
thj  ciphertext request, 

adversary  outputs a dataset 𝑗
 ′

, where 𝑗
 ′

=

,1 ,2 ,{ , ,..., }j j j nU U U¢ ¢ ¢ , for 1 i n£ £ .  responds with an 

encrypted tree 
*

j
¢G = Enc ( , , )jsk pk ¢G , where j

¢G ←

BuildTree(𝑗
 ′

). 

2) Token Request: On the 
thj  token request, outputs a 

range search qjr .  responds with a search token qjer  = 

GenToken ( , , )qjsk pk r . 

Challenge: With 0 and 1, flips a coin {0,1}b Î , computes 

bG  ←BuildTree(b), and returns 
*

bG  to adversary . 

Phase 2: Adversary  continues to submit a number of requests 

adaptively, which are still subjected to the same restrictions of 

Phase 1. 

Guess: The adversary takes a guess b¢of b. 

We say that ∏ is secure against INC-CPA in relation to data 

privacy if, for any polynomial time adversary in the above game, 

it has, at most, a negligible advantage:  

Adv∏,
IND-CPA-Data (1 )l = |Pr

1
[ ]

2
b b¢= - |£ negl( l ) 

where negl(λ) denotes a negligible function [28] in λ. 

The definition of IND-CPA Query Privacy is similar to the 

previous definition; due to space limitations, we omit the detail. 

2) Security analyses 

We now analyze the security of our scheme by following the 

preceding security games. We know that a homomorphic 

encryption scheme can against IND-CPA, so our scheme is 

IND-CPA data secure, as long as the homomorphic encryption 

is IND-CPA secure. 

Proof. We simulate the security game defined in Def. 2 with 

an adversary ’ from the ideal security game of OPE and HE. 

We then demonstrate that compromising the IND-CPA data 

privacy of our scheme is equivalent to compromising the IND-

CPA of OPE. 

Following Def. 2, the security game of our scheme is 

simulated by multiple instances of homomorphic encryption. 

As a result, ’ could not distinguish between the two datasets, 
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0 and 1, as long as any pair of the two messages could be 

distinguished in the security game: 

Adv∏,
IND-CPA-Data (1 ) ql £ ×Adv

HE,′
IND-CPA-Data

(1 )l
 

              q£ ×negl ( )l  

             £ negl’ ( )l  

where q denotes the number of homomorphic encryption 

instances needed in the game. This demonstrates the IND-CPA 

data security of our scheme. The proof for our scheme for IND-

CPA query privacy is similar to the previous data privacy proof. 

VI. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of our scheme 

for different parameter settings. We implement the KD-tree, 

OPE, homomorphic encryption and range search scheme in 

Java. Various experiments are run on a PC Intel(R) Core(TM) 

2.50GHz CPU with 12G memory. 

In the experiment, there are four real sensor datasets that 

contain 20K, 72K, 168K, and 336K, respectively. The points in 

the first three datasets are two-dimensional and represent the 

location information in the United States (e.g., Los Angeles, 

California), which are available at: 

https://www.census.gov/geo/maps-data/data/tiger.html. There 

were 16000 three-dimensional points included in the fourth 

dataset, containing 2000 objects, where each object has 8 

instances. The data are available at 

https://archive.ics.uci.edu/ml/datasets.html.  The dimensions 

represent the farm soil quality affected by three factors (i.e., air 

humidity, soil temperature, fertilizer application amount). We 

also generate a synthetic dataset to evaluate our scheme more 

precisely. The dimensionality varies from 2 to 6, and was 

named 2D, 3D, 4D, 5D and 6D, respectively.  The object size 

varies from 100 to 2000 and the instance size of each object 

varies from 2 to 8. 

All dimensions are normalized to domain [0,400]. The query 

is a rectangle, or cuboid, which changes following the 

dimensions. The query range of each dimension varies from 10 

to 50. The OPE and the homomorphic encryption key size were 

set to 128 bits. 

Table Ⅱ lists the parameters used in our performance 

evaluation.  
TABLE Ⅱ 

System parameters 
Notation Definition 

n Number of objects 

m Number of instances for each object 

k Dimension value 

Rq 

θ 

Range of query 

The probabilistic threshold 

 

A. Construction of the KD-tree 

For fairness, we evaluate the efficiency of the KD-tree 

construction process based on n, m and k in the experiments. 

Fig. 5 shows the construction time of the KD-tree for 15 

datasets, where n  varies from 100 to 2000 and m  equals 2, 5 

and 8, respectively. As expected, the construction time grows 

with n . When n=2000, m=800, the number of instances is 

16000, and the construction time of the KD-tree is only 350 

milliseconds. The construction time increases with m , because 

each node only stores one instance. When the number of 

instances increases, the height of the tree will increase. 

Fig. 6 shows the construction time of the KD-tree for 10 

datasets. From the results, we can see that the construction time 

increases linearly with the dimension k . Based on the property 

of the KD-tree (see Section Ⅲ), we know that it will calculate 

each dimension’s variance value in each partition. Hence, the 

computation cost will increase if the dimension is increased. 
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Fig. 5 Diff. n and 2,5,8m= , respectively. 
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Fig. 6 Diff. k and 100,500n = , respectively. 

B. Encryption of the KD-tree 

By fixing 2k = , we evaluate the encryption efficiency of 

our scheme as n  varies. Fig. 7 shows that the size of the object 

set varies from 100 to 2000, and the cost of the encryption 

increases almost linearly with n . This result reveals that when 

m  varies from 2 to 8, the encryption time will increase, because 

each node represents one instance. If the number of instances 

grows, the height of the KD-tree grows with it. 

https://archive.ics.uci.edu/ml/datasets.html
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Fig. 7 Diff. n and 2,5,8m= , respectively. 

The value of k is also an important factor that has an impact 

on encryption efficiency. As shown in Fig. 8, if the value of k 

varies from 2 to 6, the encryption cost increases linearly with it. 

When k is growing, OPE will be growing. The encryption cost 

will increase, as ask increases when n is bigger. 
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Fig. 8 Diff. k and n = 100 and 500, respectively. 

C. Evaluate Range Query 

Fig. 9 reports the average query response time against the 

number of objects n. We fix 2k = , =0.4q  and the query range 

R of each dimension 2 1 40d dqr qr- £ . From Fig. 9, we can see 

that the performance of 8m =  is more sensitive to the growth 

of n, as compared with 2m = . This is because, when m is 

bigger, the number of instances will increase with an increase 

in n. The KD-tree will be deep and the space will be divided 

smaller. Hence, the search time will increase. 
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Fig. 9 Diff. n and 2,5,8m= , respectively. 

Fig. 10 shows that the search time will increase linearly with 

the value of k. The performance is more sensitive to the growth 

of k.  

Fig. 11 shows that the performance of the algorithms is not 

sensitive to the probabilistic threshold θ. It is because the early 

calculation process costs lots of time, this process filters the 

most points. So, compare with θ will cost less time. We fix k = 

2 and 2m = . The search range R varies from 20 to 80. Fig. 12 

shows that the search time grows exponentially as R grows. 

This occurs because if R is bigger, the number of the nodes 

which are visited will increase, and hence, the number of 

calculations will increase. 
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VII. CONCLUSIONS 

The diversity and range of IoT devices will grow as they are 

deployed in a broader range of applications, ranging from 

civilian (e.g. smart cities and emergency response) to military 

and battlefield (e.g. Internet of Military Things and Internet of 

Battlefield Things) and so on. This reinforces the need to 

efficiently manage uncertain and increasing amount of data 

from the IoT devices. 

To ensure the security of uncertain IoT data, particularly 

those outsourced to the cloud or the edge, we developed an 

effective indexing technique to support range searches on 

multidimensional encrypted data. Specifically, in the proposed 

scheme, we used the KD-tree to organize the objects to improve 

the retrieval efficiency. To support operations over ciphertext, 

we used an OPE and homomorphic encryption scheme to 

encrypt the dataset. We then evaluated the security and 

performance of our scheme. 

Future research includes implementing a prototype of the 

proposed scheme in a real-world environment, such as on the 

university campuses of the authors. This will allow us to carry 

out a more extensive evaluation in a real-world environment, as 

well as enabling us to evaluate its scalability.   
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