
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 1



Abstract—Internet of Things (IoT) is an increasingly popular

technological trend. The operation of IoT needs a strong data-

handling capacity, where most of the data is sensor data.

Limitations associated with measurement, delays in data updating,

and/or the need to preserve the privacy of data can result in the

sensor data being uncertain. Thus, one key challenge is “How do

we ensure the privacy of data collected from IoT devices,

particularly uncertain data, that are being outsourced to the cloud

for analysis, storage and archival?”. Searchable encryption (SE)

scheme is a promising technique that allows the searching over

encrypted (uncertain) data stored offshore. In this paper, we

propose a secure range search for encrypted data from IoT

devices. Specifically, we use homomorphic and order-preserving

encryption (OPE) to encrypt data published by the data owners.

We then use the k-dimensional tree (KD-tree) to build the data

index. Our scheme is designed to ensure the privacy of the dataset,

without affecting the efficiency of keyword search on the

(encrypted) dataset. We also demonstrate that our scheme can

preserve both data and query privacy, as well as evaluating its

performance to demonstrate efficiency.

Index Terms—Internet of Things, Secure range search, sensor

data, uncertain data, range search.

I. INTRODUCTION

NTERNET of Things (IoT) devices, such as sensing devices

(e.g. Radio-Frequency Identification – RFID, infrared sensor,

global positioning system – GPS, and laser scanners), can be

used to facilitate intelligent identification, positioning, tracking,

monitoring and management. Such data (also referred to as

sensor data) can be random and incomplete in nature, partly due

to limitations of deployed measuring instruments or delays in

data updating. In other words, the sensor data can be imprecise

and uncertain. The ability to manage uncertain data efficiently

is crucial in those working with databases, etc. Thus, how to

efficiently process uncertain data is a topic of ongoing interest

to researchers [1, 2].

Range search is a fundamental query performed on uncertain

data, whose purpose is to retrieve data within the query range.

One example application of range search in IoT is in agriculture

Cheng Guo, Ruhan Zhuang, Yingmo Jie, and Xinyu Tang are with the

School of Software Technology, Dalian University of Technology and Key

Laboratory for Ubiquitous Network and Service Software of Liaoning

Province, Development Zone, Dalian 116620, China. (e-mail:

guocheng@dlut.edu.cn, clindy007@163.com, jymsf2015@mail.dlut.edu.cn,

1079062525@qq.com).

[2], where farmers can install sensors in the field to monitor

temperature changes, relative humidity and pollution level

information. Each sensor obtains a set of sensor data

1{ ,..., }nU u u= , where U represents a sensor object, iu

represents an instance, and [1,]i nÎ . Hence, each object

contains three data values and is modeled as a three-

dimensional object (Fig. 1).

There are three sensor objects{ , , }A B C , due to factors such

as equipment failure and noise. The received sensor objects

may be uncertain. As such, each object is represented by an

uncertain region rA (shaded areas in Fig. 1) and the

probabilistic density function (PDF) (.A pdf in Fig. 1). This

implies that an object may appear in an uncertain region with

the probabilities described by its PDF. Farmers cannot obtain

precise data in practice. However, using range search, they can

analyze and determine which range has abnormal conditions

(e.g., fire hazard, waterlogging, and insect attacks). It is an

effective way for them to have a real-time understanding of the

conditions in the fields.

A

B
C

Search Range

.Apdf

rA

Fig. 1 Range search over sensor data

Existing research on range searches over multidimensional

uncertain data with an arbitrary PDF [1, 3, 4] mainly follow the

filtering and verification paradigm. By leveraging an effective

index structure, some objects can be filtered at a threshold value

without calculating their appearance probabilities in detail.

Also, existing research generally focus on plaintext and does

not consider data interaction and sharing.

An important medium for sensor data interaction and sharing

in the IoT is the cloud, due to benefits that could be realized

such as cost efficiency, high-capacity and the reduction of

overhead. For example, data owners can potentially benefit

K.-K. R. Choo is with the Department of Information Systems and Cyber

Security and the Department of Electrical and Computer Engineering,

University of Texas at San Antonio, San Antonio, TX 78249-0631, USA (e-

mail: raymond.choo@fulbrightmail.org).

Secure Range Search over Encrypted Uncertain

IoT Outsourced Data

Cheng Guo, Ruhan Zhuang, Yingmo Jie, Kim-Kwang Raymond Choo, Senior Member, IEEE, and

Xinyu Tang

I

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 2

from the outsourcing of the database to the cloud. A tradeoff is

data owners ceding over the control of the query process. This

clearly has security implications. It is also not safe for data

owners to upload plaintext data. Encrypting the data prior to

outsourcing is an effective security measure, although a tradeoff

is reduced data utility. For example, searching on encryption

datasets will be inefficient and impractical.

Searchable encryption (SE) schemes can be designed to

search on encrypted data, such as the symmetric SE scheme of

Song et al. [5] and the symmetric SE scheme in [6]. The SE

schemes have been applied in a number of areas [7-9]. The

uncertain and imprecise nature of IoT sensing data, however,

complicate the design of efficient search schemes on such

encrypted data.

In this paper, we are motivated by the challenge in designing

a secure range search scheme to support the queries of uncertain

outsourced IoT data. In [10], for example, the authors used U-

Quadtree to organize the uncertain data in order to support the

range search. They developed a cost model to build an effective

quadtree. This tree would be unbalanced if the data in the

dataset was uneven. The unbalanced tree would also incur

significant storage and time overhead.

To solve this problem, we apply a k-dimensional tree (KD-

tree) [11], or the binary space partitioning structure, to organize

the sensor data. According to the data distribution, a KD-tree

can split the dataset evenly and support an efficient range search.

To support comparison and additive operations, we apply

homomorphic and order-preserving encryption (OPE)

encryption to encrypt the sensor data published by the data

owners. This can be used to hide the access and search patterns

and ensure data privacy. We use two cloud servers (C1 and C2)

to support the range search process. Our scheme algorithm

achieves a significant improvement in performance during a

range search over the encrypted uncertain sensor data.

We consider the contributions in this paper to be the new

searchable encryption scheme designed to facilitate secure and

fast range search over uncertain sensor data, using KD-tree,

OPE and homomorphic encryption. In our scheme, we ensure

the confidentiality of the dataset and the query, by hiding the

search and access patterns.

The rest of this paper is organized as follows. In Section Ⅱ,

we introduce extant literature including related SE schemes,

range search and data privacy. We then introduce the relevant

background information (i.e. OPE, homomorphic encryption,

KD-tree, uncertain sensor data) in Section Ⅲ. Section Ⅳ

presents the model of our scheme, the algorithms for the range

search and the security analysis. The experimental analysis is

given in Section Ⅴ. Our conclusions are presented in Section Ⅵ.

II. RELATED WORK

As previously discussed, SE scheme enables data owners to

search on their encrypted data, say in the cloud (more

specifically, search the data over a ciphertext domain). Existing

SE schemes can be categorized into those based on public key

based cryptography [6, 12, 13], and those based on symmetric

key based cryptography [5, 14, 15]. Song et al. [5] proposed the

first symmetric SE scheme, but many other searchable

encryption schemes were proposed afterwards [13, 16, 17].

These early works only support keyword search schemes,

which are very simple in terms of functionality. As technologies

advance, so does the complexity of data. For example, IoT data

(e.g. sensor data), as well as the errors, or the limitations of the

sensors, result in the obtained data being uncertain. However,

early SE schemes are not capable of supporting searches over

uncertain data.

Uncertain data management [18, 19] has gained traction

among researchers, particularly due to the many practical

applications in various domains. Range search is an effective

way to conduct data analysis, by enabling a quick search of the

most relevant data. Not surprisingly, a number of range search

schemes over plaintext uncertain data have been presented in

the literature in recent years [1, 3, 4]. Most existing schemes

use some indexing techniques to improve the retrieval

performance.

Common retrieval structures include R-tree [1, 3], U-tree [4],

UI-tree [20], UP-index [21], Quadtree [10] and KD-tree [11].

The first four structures employ an “equality strategy”, that is,

the same amount of resources in terms of the index space usage

are allocated to each uncertain object. Consequently, they

cannot effectively address different uncertain region sizes

during the index construction process. To overcome such a

limitation, the authors in [10] applied Quadtree to organize the

uncertain data . Quadtree is a space partitioning tree data

structure in which a d-dimensional space is recursively

subdivided into 2d
 regions. In each iteration of the partitioning

process, the space will be divided into 2d
 equal parts. Fig. 2 is

an example of Quadtree. The data points are in a 2-dimendional

space and the space is recursively divided into 4 regions. In Fig.

2, the data points are uneven, which leads to some useless

partitions. However, it will increase the space and time

overhead. As discussed earlier, existing schemes only support

range searching over plaintext uncertain data. In other words,

such schemes are ineffective on encrypted uncertain data.

Fig. 2 An example of Quadtree

In this paper, we apply KD-tree, a binary space partitioning

structure, to organize the uncertain sensor data. KD-tree is

mainly used in multidimensional space data retrieval (e.g.,

range and nearest neighbor searches). It can achieve efficient

retrievals by solving defects in other indexing structures.

Because data from the diverse IoT devices (e.g., sensors) is

uncertain, a range search over the encrypted data should support

some basic operations.

 Many existing efficient encryption primitives can support

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 3

different operations in the ciphertext domain. Paillier et al. [22],

for example, proposed a homomorphic encryption scheme to

support additions. OPE [23, 24] can evaluate comparisons.

BGN (the abbreviation for the authors’ name) encryption [25],

proposed by Boneh et al., or the more recent novel approach in

[26], can support an unlimited number of additions and only one

multiplication.

In this paper, we apply OPE and homomorphic encryption

simultaneously to encrypt the sensor data. Data owners obtain

uncertain data from the IoT devices. They then use the KD-tree

to organize the data. To ensure data privacy, they will use the

OPE and homomorphic encryptions to encrypt the KD-tree and

the dataset. Such data can then be outsourced to the cloud.

When users wish to perform a range search, they should encrypt

the query and then send that query to the cloud. When the cloud

receives the query, it will conduct a search over the KD-tree and

return the encrypted results to the users. Users use their own

secret key to decrypt the results and choose the results they

want. The detailed algorithm will be presented in Section Ⅳ.

III. PRELIMINARIES

In this section, we revisit the homomorphic encryption [22],

OPE [24] and KD-tree, prior to presenting the security

definitions for our scheme.

A. Homomorphic Encryption

The homomorphic encryption system [22] is an additive

homomorphic and probabilistic asymmetric encryption scheme,

based on the higher-order residue class problem. It contains

three stages, namely: key generation, encryption and

decryption.

Let pk be the public key given by (,)N g , where N is the

product of two large primes and g is in 2N

*¢ . Let pkE be the

encryption function with public key pk and skD be the

decryption function with secret key sk . Given plaintext

, Na b Î ¢ , this system has the following properties:

1) Homomorphic Addition
2() ()* () modpk pk pkE a b E a E b N 

2) Homomorphic Multiplication
2(*) () modb

pk pkE a b E a N

The Paillier encryption system has been shown to be

semantically secure, where an adversary cannot infer any

information about the plaintext from the given ciphertexts.

B. Order-Preserving Encryption (OPE)

OPE [24] is a special type of encryption, where the orders of

the encrypted data are the same as the orders of their plaintext.

This property makes it possible to sort and rank the encrypted

data without revealing the plaintext. The ideal security of OPE

is defined with indistinguishability under Chosen-Plaintext

Attacks (IND-CPA). It has been recently achieved by [23, 27].

Let pk be the public key and pkE be the encryption function.

Given plaintext , Na b Î ¢ , OPE can insure that, if a b> , then

() ()pk pkE a E b> .

C. KD-tree

A KD-tree is a data structure for indexing k-dimensional

point data distributed in a k-dimensional space. It can be

considered a k-dimensional binary search tree [11]. It is also a

good solution to the space partitioning problem. Every node in

a KD-tree is a k-dimensional point. Every non-leaf node can be

considered to implicitly generate a splitting hyperplane that

divides the space into two parts. Points to the left of this

hyperplane is represented by the left subtree of that node and

the other hyperplane is represented by the right subtree.

All nodes in the tree are associated with one of the k-

dimensions and the hyperplane of each dimension is

perpendicular to that dimension’s axis. The first step is

calculating the variance of each of these dimensions based on

the points’ values. We choose the maximum value of the

variances and define the corresponding dimension by the

splitting hyperplane direction. The points will be sorted by the

value of the dimension corresponding to the maximum value of

the variances. For example, if the “x” axis is chosen for a

particular split, all points in the subtree with a smaller “x” value

than the node will be in the left subtree and all points with a

larger “x” value will be in the right subtree. We can recursively

run the methods to construct the KD-tree. Selecting the splitting

hyperplane direction based on the variance can guarantee that

all the points can be split uniformly.

Fig. 3 is an example of a KD-tree, where the uncertain sensor

object set is { , , }A B C , each object has five points (instances),

and the points are in a 2-dimensional space. It has two splitting

hyperplane directions: an x-axis and a y-axis. By calculating the

variances of these two dimensions, we determine that the

variance of the x-dimensional space is bigger. We set the

splitting hyperplane direction as the x-axis, with the point (5,

6.5) as the median point. The points with a smaller x value than

“5” will be in the left subtree and the points with a larger x value

than “5” will be in the right subtree. We should recursively

construct the left and the right subtree until there is no point to

be split.

Fig. 3 (a) represents the partitioning of the space, and (b)

represents the corresponding KD-tree. Each node consists of

one instance and its corresponding range.

D. Security definition

The main security objective of our scheme is to preserve both

data and query privacy from untrusted cloud servers, which can

be informally explained as:

 Data privacy: Given two encrypted datasets, 0D and 1D ,

an adversary cannot distinguish between these two

datasets.

 Query privacy: Given two search tokens, 0Q and 1Q , an

adversary cannot distinguish between these two queries.

The rigorous definitions of our data and query privacy, with

indistinguishability under Chosen-Plaintext Attacks (IND-

CPA), and its corresponding leakage function, are presented in

Section Ⅴ.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 4

 (a) (b)

Fig. 3 The construction of the KD-tree based on three uncertain sensor objects: A {[2,3] [5.5,4] [4,7] [3,6] [3.5,2]}, B {[2.5,1.5] [5,6.5] [7,1] [9,5.5] [8,4.5]} and

C {[1,4] [4.5,5] [9,2.5] [8,8] [6,5.5]}. Each object has five instances and the probability of each instance is 0.2.

IV. MODEL OF THE PROPOSED SCHEME

In this section, we describe our proposed secure range search

model and then briefly introduce the general process of our

scheme. Then, we provide the definition of a range search over

the encrypted sensor data. The algorithm will be presented in

Section Ⅴ.

A. Model of the scheme

In this paper, our scheme consists of four entities: 1) data

owner, 2) cloud server 1 (C1), 3) cloud server 2 (C2) and 4)

user. The model is illustrated in Fig. 4. The model illustrates

that the sensor object consists of a sensor object ID, a set of

instances and the probability of each instance. Each instance is

a d-dimensional with its own coordinate. The data owner has a

collection of data sets to be outsourced to the cloud server in the

encrypted form. To enable the searching capability over

encrypted data, the data owner will first build an encrypted KD-

tree with the data sets. Then, the encrypted data sets and

encrypted KD-tree will outsource to C1. When a user wants to

do a range search, the user will encrypt the query and then send

to C1. C1 and C2 will cooperate with each other to search over

the encrypted KD-tree and then return the results to the user.

Our secure range search scheme consists of the following six

polynomial-time protocols:

 GenKey(1l
) →{ , }OPE HEsk pk : Given a security parameter

l , the data owner computes and outputs:

OPEsk ←OPE.GenKey(1l
) and HEpk ←HE.GenKey(1l

),

where HE denotes homomorphic encryption.

 BuildTree() → G : Given an object set =

1 2{ , ,..., }nU U U , each object U has m instances, denoted

by 1 2{ , ,..., }mU u u u= . There are m n´ instances. This

protocol uses all instances to construct a KD-tree. Each

node consists of one instance and its corresponding range

11 12 21 22 1 1{[,],[,],...,[,]}d dR r r r r r r= . The range is

calculated based on the coordinate of the instance.

 Enc (, ,)OPE HEsk pk G → *G : Given a secret key OPEsk , a

public key HEpk and a KD-tree G . In the following range

search process, we should compare the value of the

instances’ coordinates and conduct an additive operation

on the probabilities. The data owner traverses the KD-tree

to encrypt each node with:

OPE.Enc 1 2([, ,...,])i i idD D D → 1 2[, ,...,]i i ideD eD eD

OPE.Enc(11 12 21 22 1 1{[,],[,],...,[,]}d dr r r r r r)→ eR

to obtain each instance’s encrypted coordinate and the

encrypted range, where 1 2[, ,...,]i i idD D D is each

dimension value of the instance i. The data owner then

runs:

HE.Enc ()ipu → ipeu ,

to obtain each instance’s encrypted probability. The data

owner outputs an encrypted KD-tree
*G .

 GenToken (, ,)OPE HE qsk pk r → qer : Given the secret key

OPEsk , a range search 11 12 21 22{[,],[,],qr qr qr qr qr=

1 2...,[,]}d dqr qr and a probabilistic threshold θ, where

1 2[,]j jr r denotes the range of the
thj dimension,

1 j d£ £ . The user encrypts it as:

OPE.Enc 11 12 21 22 1 2({[,],[,],...[,]})d dqr qr qr qr qr qr

→ 11 12 21 22 1 2{[,],[,],...,[,]}d deqr eqr eqr eqr eqr eqr

HE.Enc(θ)→ eq ,

 and outputs qer as a search token.

 Search
*(,)qerG → qeU : Given the search token qer and

an encrypted KD-tree
*G , C1 starts from the root node,

and traverses
*G to calculate the upper and lower

appearance probability of each object regarding qer and

sends these to C2. The detailed search process will be

given in Section Ⅴ. The cloud servers cooperate with each

other to output a sensor object set, which satisfies the

search token.

 Dec (, ,)qOPE HEsk pk eU → qrU : Given secret key OPEsk ,

public key HEsk and the object set returned from the cloud

server. The user runs this protocol to obtain the final

sensor object set, which satisfies the probabilistic

threshold q .

A

B

C

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 5

B. Problem Definition

In this subsection, we define uncertain sensor data. Table 1

summarizes the notations frequently used throughout the paper.

The uncertain sensor data (object) is represented by its

possible points and the probability that it may appear at each

point. All the points in the paper are in a d-dimensional

numerical space. In particularly, an uncertain sensor object can

be described either continuously or discretely. We will

introduce these two conditions as follows.
TABLE I

Summary of notations
Notation Definition

U () Sensor objects (a set of sensor objects)

eU Encrypted sensor object

n Number of uncertain objects

{[qr11, qr12],…,[qrd1,qrd2]} Range search region rq

uip The probability of U appears at instance ui

euip Encrypted probability of U appears at ui

[Di1, Di2,…,Did] The coordinate of instance i

{[r11,r12],…,[rd1,rd2]} The range of a node

θ Probabilistic threshold

P (U, rq) The appearance probability of U regarding rq

eP (U, rq) Encrypted appearance probability regarding rq\

LP (U, rq) The lower bounds of P (U, rq)

eLP (U, rq) Encrypted lower bounds of P (U, rq)

UP (U, rq) The upper bound of P (U, rq)

eUP (U, rq) Encrypted upper bound of P (U, rq)

In the continuous case, a sensor object U is described by its

probability density function (PDF) .U pdf and its uncertain

region rU . . ()U pdf x denotes the probability of U appearing

at point x , yielding . () 1
rx U
U pdf x dx

Î
=ò . Sometimes, the

PDF of the sensor object may not be available, and hence, a

sensor object is represented by a set of sampled points, which

is the discrete case. A sensor object contains a set of instances

(points) 1 2{ , ,..., }mU u u u= , ipu denotes the probability of U

appearing at instance iu and 1pu U
u

Î
=å .

For a point p and a region r , p rÎ means that r contains

p . For any two regions 1r and 2r , 2 1r rÍ if 1 2 1r r rÈ = means

1r contains 2r . We say 1r overlaps 2r if 2 1r rË and 1 2r rÇ ¹ Æ

.

For presentation simplicity, we concentrate on the discrete

case in this paper. Nevertheless, all techniques developed in this

paper can be applied to the continuous case.

Below is the definition of a “probabilistic threshold range

search”, which is equivalent to a “range search” in the rest of

paper.

Definition 1(Probabilistic Threshold Range Search). Given

a set  of sensor objects and a user specified probabilistic

threshold q , the probabilistic threshold range search retrieves

all objects U Î  with (,)qP U r q³ (0 1q£ £).

In this paper, we concentrate on the problem of a

probabilistic threshold range search over encrypted

multidimensional sensor objects. We aim to develop an

effective indexing structure to facilitate the range search

process.

V. RANGE SEARCH OVER ENCRYPTED SENSOR OBJECTS

A. Main Idea

As specified previously, the main process of our scheme can

be summarized as follows:

The data owner obtains the sensor dataset from the sensors,

where the dataset contains n uncertain sensor objects and each

object contains m instances. Each instance is a triplet

(. , . ,)pu o u D u , where .u o denotes the object it belongs to, .u D

denotes the coordinate of this instance, and pu denotes the

probability of this instance. The data owner constructs a KD-

tree based on the instances. Each node is a two-tuple (. , .)u o u R ,

where u denotes the instance in this node and

11 12 21 22 1 1{[,],[,],...,[,]}d dR r r r r r r= denotes the range of its area,

as in Fig. 3 (b), where d denotes the d-dimensional space. The

range of each node is calculated based on the coordinate of the

instance n.u.D.

OPE

Homomorphic

Encryption

Data Owner

Encrypted

KD-tree

Users

Search TokenKD-tree

Construction

OPE

Search Range

Encrypted Query

Epk(Range)

Encrypted Query

Threshold θ

Cloud Server 1

Search

Search

Result

Decryption

[3,5,7.5]

[6.5,9.5]

Cloud Server 2

Object set

The threshold θ

Result set
Own secret key

Fig. 4 The model of the secure range search over encrypted sensor data

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 6

The data owner runs the encryption function mentioned in

Section Ⅳ to encrypt the KD-tree and output the encrypted KD-

tree
*G , where the two-tuple of each node is denoted by

(. , .)n eu n eR . The data owner then outsources the encrypted

KD-tree
*G to the C1. If a user wants to conduct a range search,

then he/she should use the secret key of OPE to encrypt the

query qr and then send the encrypted search token qer to C1.

When C1 gets a search token, it will traverse
*G to calculate

the encrypted lower and upper bounds of the probability for all

objects and then send it to C2. C2 decrypts these probabilities

and compares them to the user’s probabilistic threshold q . It

chooses the objects that satisfy the requirements. Then, C2

encrypts the result object set and sends it to C1. C1 re-confirms

the results and then sends the set to the user. The user decrypts

the results to obtain the objects. During this time, C2 will follow

the filtering-and-verification process to choose the objects that

satisfy his/her requirements. A sensor U may be filtered in

either of the following ways:

1) U is pruned if (,)qUP U r is smaller than the given

probabilistic threshold θ, or

2) U is validated if (,)qLP U r is not less than θ,

where (,)qLP U r and (,)qUP U r denote the lower and upper

bounds of (,)qP U r , respectively. Only the objects that survive

the filtering phase need to be verified (i.e., explicitly computing

(,)qP U r).

B. KD-tree based Range Search

Theorem 1 indicates that we can derive (,)qLP U r and

(,)qUP U r , based on the topological relationship between qr

and the range of each node.

Theorem 1. Given a search token qer and an encrypted KD-tree

*G , let N1 (N2) denote the node set contained (overlapped) by

qer :

(,) . .q peLP U r n u eu= Õ , where 1.n eR NÎ

(,) . .q peUP U r n u eu= Õ , where 1 2.n eR N NÎ È

Proof. Because the probability of each instance up is encrypted

by a homomorphic encryption, we should use the property of

homomorphic addition to calculate (,)qeLP U r and

(,)qeUP U r . For any node n, we have . qn u erÎ if the range of

node n is contained by qer . Immediately, Dec((,)qeP U r) ³

Dec(. . pn u euÕ), where Dec() is the decryption function and

1.n eR NÎ . Given a node n, if .n eR is not contained or

overlapped by qer , then we have qn erÏ . This implies Dec(

(,)qeP U r) £ 1- Dec(. . pn u euÕ), where 1 2.n eR N NÏ È .

Because Dec(pu U
eu

ÎÕ) = 1, we have Dec((,)qeP U r) £ Dec(

. . pn u euÕ), where 1 2.n eR N NÎ È . Therefore, the theorem

holds.

Example 1. In Fig. 3 (a), given a search region qr q, according

to Theorem 1, only the area 1 is contained in qr The area 2, 3,

4, 5, 6, 7 and 8 is overlapped by qr . The range of each node and

the search region qr are encrypted by OPE, so we can also

compare the range over the ciphertext. We can now obtain

(,)qeLP C r = Enc(0.2), (,)qeUP C r = Enc(0.2) × Enc(0.2) ×

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 7

Enc(0.2) = Enc(0.6). When the user obtains the resulting set,

he/she will decrypt it to obtain the objects’ (,)qLP U r and

(,)qUP U r . This will then be compared with his/her own

probabilistic threshold q . Consequently, C is pruned if θ = 0.8

and C is validated if θ = 0.2. Hence, we need to verify C if

θ = 0.4.

Algorithm 1 details the range search following the filtering-

and-verification paradigm. Lines 3-14 for C1 traverse
*G to

calculate each object’s (,)qeLP U r and (,)qeUP U r values.

C1 sends the object set  to C2, who then uses HEsk to decrypt

(,)qeLP U r and (,)qeUP U r .

According to Theorem 1, we arrive at the lower and upper

bounds of the appearance probabilities of the objects. We can

validate an object U if (,)qLP U r q³ (line 18). We only need

to verify the remaining objects set V, in which

(,) (,)q qLP U r UP U rq³ ³ (line 21). C2 encrypts set V and

sends it to C1, C1 calculates the (,)qeP U r value of each object

in set V (lines 26-32). And then, C1 sends set V to C2. C2

decrypts it and compares each object’s (,)qP U r with θ. The

objects which (,)qP U r q³ (line 36) will be added to the

resulting set R. C2 encrypts the resulting set R and then sends it

to C1. C1 will return R to the user.

When the sensors obtain more data set, the KD-tree should

be updated duly. If a little bit of data should be inserted to the

KD-tree, the data owner can encrypt the data set and then

upload it to C1. Each level of the KD-tree contains the splitting

hyperplane direction. When C1 receives the encrypted data set,

it will insert each data into
*G . The process of inserting data

can be summarized as follows:

C1 traverses
*G from the root node and compares the value

on the corresponding splitting hyperplane direction. If the value

is smaller than the root node, it should traverse its left node until

the data can be inserted to a leaf node.

The essence of the KD-tree is a balanced binary tree.

Inserting plenty of the data will destroy the balance. So, the data

owner should reconstruct the KD-tree with the old and new data

if large volume of data will be updated.

C. Security analysis

Prior to analyzing the security of the proposed scheme, we

will provide some necessary definitions.

1) Concepts definition

Leakage Function . In a searchable encryption scheme, a

leakage function covers all the possible leakages revealed

during the search process. The leakage function of a sensor

object set  introduced by query qr , can be denoted as (, qr).

In our scheme, the leakage function contains an access

pattern (i.e., the identifiers of the encrypted data that are

retrieved for each query), search pattern (i.e., whether the same

encrypted result is retrieved by the two different queries), and a

path pattern (i.e., the path that the search algorithm traverses in

the KD-tree). The security of the data and query privacy in our

scheme is defined as follows:

Definition 2 (IND-CPA Data Privacy) Let ∏ = (GenKey,

BuildTree, Enc, GenToken, Search, Dec) be a probabilistic

secure range search scheme over security parameter λ. We

define a secure game between a challenger  and an adversary

:

Init:  submits two sensor datasets 0 and 1 with the same

size and isomorphic tree structure 0 1G G; , where 0 =

01 02 0{ , ,..., }nU U U , 1 = 11 12 1{ , ,..., }nU U U , for 1 i n£ £ , 01U ,

02U ,…, 0nU and 11U , 12U ,…, 1nU are all distinct, 0G

←BuildTree(0), and 1G ←BuildTree(1).

Setup: Challenger  runs GenKey(1l
) to generate a public key

pk and a secret key sk . It keeps these keys private.

Phase 1: Adversary  adaptively submits a few requests. Each

request is one of the two following types:

1) Ciphertext request: On the
thj ciphertext request,

adversary  outputs a dataset 𝑗
 ′

, where 𝑗
 ′

=

,1 ,2 ,{ , ,..., }j j j nU U U¢ ¢ ¢ , for 1 i n£ £ .  responds with an

encrypted tree
*

j
¢G = Enc (, ,)jsk pk ¢G , where j

¢G ←

BuildTree(𝑗
 ′

).

2) Token Request: On the
thj token request, outputs a

range search qjr .  responds with a search token qjer =

GenToken (, ,)qjsk pk r .

Challenge: With 0 and 1, flips a coin {0,1}b Î , computes

bG ←BuildTree(b), and returns
*

bG to adversary .

Phase 2: Adversary  continues to submit a number of requests

adaptively, which are still subjected to the same restrictions of

Phase 1.

Guess: The adversary takes a guess b¢of b.

We say that ∏ is secure against INC-CPA in relation to data

privacy if, for any polynomial time adversary in the above game,

it has, at most, a negligible advantage:

Adv∏,
IND-CPA-Data (1)l = |Pr

1
[]

2
b b¢= - |£ negl(l)

where negl(λ) denotes a negligible function [28] in λ.

The definition of IND-CPA Query Privacy is similar to the

previous definition; due to space limitations, we omit the detail.

2) Security analyses

We now analyze the security of our scheme by following the

preceding security games. We know that a homomorphic

encryption scheme can against IND-CPA, so our scheme is

IND-CPA data secure, as long as the homomorphic encryption

is IND-CPA secure.

Proof. We simulate the security game defined in Def. 2 with

an adversary ’ from the ideal security game of OPE and HE.

We then demonstrate that compromising the IND-CPA data

privacy of our scheme is equivalent to compromising the IND-

CPA of OPE.

Following Def. 2, the security game of our scheme is

simulated by multiple instances of homomorphic encryption.

As a result, ’ could not distinguish between the two datasets,

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 8

0 and 1, as long as any pair of the two messages could be

distinguished in the security game:

Adv∏,
IND-CPA-Data (1) ql £ ×Adv

HE,′
IND-CPA-Data

(1)l

 q£ ×negl ()l

 £ negl’ ()l

where q denotes the number of homomorphic encryption

instances needed in the game. This demonstrates the IND-CPA

data security of our scheme. The proof for our scheme for IND-

CPA query privacy is similar to the previous data privacy proof.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme

for different parameter settings. We implement the KD-tree,

OPE, homomorphic encryption and range search scheme in

Java. Various experiments are run on a PC Intel(R) Core(TM)

2.50GHz CPU with 12G memory.

In the experiment, there are four real sensor datasets that

contain 20K, 72K, 168K, and 336K, respectively. The points in

the first three datasets are two-dimensional and represent the

location information in the United States (e.g., Los Angeles,

California), which are available at:

https://www.census.gov/geo/maps-data/data/tiger.html. There

were 16000 three-dimensional points included in the fourth

dataset, containing 2000 objects, where each object has 8

instances. The data are available at

https://archive.ics.uci.edu/ml/datasets.html. The dimensions

represent the farm soil quality affected by three factors (i.e., air

humidity, soil temperature, fertilizer application amount). We

also generate a synthetic dataset to evaluate our scheme more

precisely. The dimensionality varies from 2 to 6, and was

named 2D, 3D, 4D, 5D and 6D, respectively. The object size

varies from 100 to 2000 and the instance size of each object

varies from 2 to 8.

All dimensions are normalized to domain [0,400]. The query

is a rectangle, or cuboid, which changes following the

dimensions. The query range of each dimension varies from 10

to 50. The OPE and the homomorphic encryption key size were

set to 128 bits.

Table Ⅱ lists the parameters used in our performance

evaluation.
TABLE Ⅱ

System parameters
Notation Definition

n Number of objects

m Number of instances for each object

k Dimension value

Rq

θ

Range of query

The probabilistic threshold

A. Construction of the KD-tree

For fairness, we evaluate the efficiency of the KD-tree

construction process based on n, m and k in the experiments.

Fig. 5 shows the construction time of the KD-tree for 15

datasets, where n varies from 100 to 2000 and m equals 2, 5

and 8, respectively. As expected, the construction time grows

with n . When n=2000, m=800, the number of instances is

16000, and the construction time of the KD-tree is only 350

milliseconds. The construction time increases with m , because

each node only stores one instance. When the number of

instances increases, the height of the tree will increase.

Fig. 6 shows the construction time of the KD-tree for 10

datasets. From the results, we can see that the construction time

increases linearly with the dimension k . Based on the property

of the KD-tree (see Section Ⅲ), we know that it will calculate

each dimension’s variance value in each partition. Hence, the

computation cost will increase if the dimension is increased.

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

C
o
n
st

ru
ct

io
n
 t

im
e

(m
s)

The number of objects (n)

 m = 5

 m = 8

 m = 2

Fig. 5 Diff. n and 2,5,8m= , respectively.

1 2 3 4 5 6 7

10

20

30

40

50

60

C
o
n
st

ru
ct

io
n
 t

im
e

(m
s)

The dimension of each instance (k)

 n = 100

 n = 500

Fig. 6 Diff. k and 100,500n = , respectively.

B. Encryption of the KD-tree

By fixing 2k = , we evaluate the encryption efficiency of

our scheme as n varies. Fig. 7 shows that the size of the object

set varies from 100 to 2000, and the cost of the encryption

increases almost linearly with n . This result reveals that when

m varies from 2 to 8, the encryption time will increase, because

each node represents one instance. If the number of instances

grows, the height of the KD-tree grows with it.

https://archive.ics.uci.edu/ml/datasets.html

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 9

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

180

E
n
cr

y
p
ti

o
n
 c

o
st

 (
1
0

3
m

s)

The number of objects (n)

 m = 2

 m = 5

 m = 8

Fig. 7 Diff. n and 2,5,8m= , respectively.

The value of k is also an important factor that has an impact

on encryption efficiency. As shown in Fig. 8, if the value of k

varies from 2 to 6, the encryption cost increases linearly with it.

When k is growing, OPE will be growing. The encryption cost

will increase, as ask increases when n is bigger.

1 2 3 4 5 6 7

10

20

30

40

50

60

70

80

90

E
n

cr
y

p
ti

o
n

 c
o

st
 (

1
0

3
m

s)

The dimensions of each instance (k)

 n = 100

 n = 500

Fig. 8 Diff. k and n = 100 and 500, respectively.

C. Evaluate Range Query

Fig. 9 reports the average query response time against the

number of objects n. We fix 2k = , =0.4q and the query range

R of each dimension 2 1 40d dqr qr- £ . From Fig. 9, we can see

that the performance of 8m = is more sensitive to the growth

of n, as compared with 2m = . This is because, when m is

bigger, the number of instances will increase with an increase

in n. The KD-tree will be deep and the space will be divided

smaller. Hence, the search time will increase.

0 500 1000 1500 2000
0

5

10

15

20

25

30

S
ea

rc
h

 t
im

e
(1

0
3

m
s)

The number of objects (n)

 m = 2

 m = 5

 m = 8

Fig. 9 Diff. n and 2,5,8m= , respectively.

Fig. 10 shows that the search time will increase linearly with

the value of k. The performance is more sensitive to the growth

of k.

Fig. 11 shows that the performance of the algorithms is not

sensitive to the probabilistic threshold θ. It is because the early

calculation process costs lots of time, this process filters the

most points. So, compare with θ will cost less time. We fix k =

2 and 2m = . The search range R varies from 20 to 80. Fig. 12

shows that the search time grows exponentially as R grows.

This occurs because if R is bigger, the number of the nodes

which are visited will increase, and hence, the number of

calculations will increase.

1 2 3 4 5 6 7
2

4

6

8

10

12

14

S
ea

rc
h

 t
im

e
(1

0
3
m

s)

The dimensions of each instance (k)

 n = 100

 n = 500

Fig. 10 Diff. k and n = 100 and 500, respectively

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

S
ea

rc
h
 t

im
e

(1
0

3
m

s)

The probabilistic threshold

 n = 500

 n = 1000

Fig. 11 Diff. θand n = 500 and 1000, respectively.

20 30 40 50 60 70 80
4

5

6

7

8

9

10

S
ea

rc
h
 t

im
e

(1
0

3
m

s)

The search range R

 n = 500

 n = 1000

Fig. 12 Diff. search range R and n = 500 and 1000, respectively.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2845106, IEEE Internet of
Things Journal

 10

VII. CONCLUSIONS

The diversity and range of IoT devices will grow as they are

deployed in a broader range of applications, ranging from

civilian (e.g. smart cities and emergency response) to military

and battlefield (e.g. Internet of Military Things and Internet of

Battlefield Things) and so on. This reinforces the need to

efficiently manage uncertain and increasing amount of data

from the IoT devices.

To ensure the security of uncertain IoT data, particularly

those outsourced to the cloud or the edge, we developed an

effective indexing technique to support range searches on

multidimensional encrypted data. Specifically, in the proposed

scheme, we used the KD-tree to organize the objects to improve

the retrieval efficiency. To support operations over ciphertext,

we used an OPE and homomorphic encryption scheme to

encrypt the dataset. We then evaluated the security and

performance of our scheme.

Future research includes implementing a prototype of the

proposed scheme in a real-world environment, such as on the

university campuses of the authors. This will allow us to carry

out a more extensive evaluation in a real-world environment, as

well as enabling us to evaluate its scalability.

ACKNOWLEDGMENT

This paper is supported by the National Natural Science

Foundation of China under grant No. 61501080 and 61572095.

The research is also partially supported by the Cloud

Technology Endowed Professorship, and NSF CREST Grant

HRD-1736209.

REFERENCES

[1] H. P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, "Probabilistic

similarity join on uncertain data," in International Conference on

Database Systems for Advanced Applications, 2006, pp. 295-309.

[2] M. Roopaei, P. Rad, and K. K. R. Choo, "Cloud of Things in Smart

Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging,"

IEEE Cloud Computing, vol. 4, pp. 10-15, 2017.

[3] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch,

"Indexing Uncertain Categorical Data," in IEEE International

Conference on Data Engineering, 2007, pp. 616-625.

[4] Y. Tao, X. Xiao, and R. Cheng, "Range search on multidimensional

uncertain data," Acm Transactions on Database Systems, vol. 32, p.

15, 2007.

[5] D. X. Song, D. Wagner, and A. Perrig, "Practical Techniques for

Searches on Encrypted Data," in IEEE Symposium on Security and

Privacy, 2000, p. 44.

[6] B. Dan, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, Public Key

Encryption with Keyword Search: Springer Berlin Heidelberg,

2004.

[7] C. Guo, R. Zhuang, Y. Jie, Y. Ren, T. Wu, and K.-K. R. Choo,

"Fine-grained database field search using attribute-based encryption

for e-healthcare clouds," Journal of Medical Systems, vol. 40, p.

235, 2016.

[8] Y. Liu, C. Cheng, T. Gu, T. Jiang, and X. Li, "A Lightweight

Authenticated Communication Scheme for Smart Grid," IEEE

Sensors Journal, vol. 16, pp. 836-842, 2016.

[9] Y. Liu, W. Guo, C.-I. Fan, L. Chang, and C. Cheng, "A Practical

Privacy-Preserving Data Aggregation (3PDA) Scheme for Smart

Grid," IEEE Transactions on Industrial Informatics, 2018.

[10] Y. Zhang, W. Zhang, Q. Lin, X. Lin, and H. T. Shen, "Effectively

Indexing the Multidimensional Uncertain Objects," IEEE

Transactions on Knowledge & Data Engineering, vol. 26, pp. 608-

622, 2014.

[11] J. L. Bentley, Multidimensional binary search trees used for

associative searching: ACM, 1975.

[12] B. Dan, E. Kushilevitz, R. Ostrovsky, and W. E. S. Iii, Public Key

Encryption That Allows PIR Queries, 2007.

[13] C. Guo, X. Chen, Y. Jie, Z. Fu, M. Li, and B. Feng, "Dynamic Multi-

phrase Ranked Search over Encrypted Data with Symmetric

Searchable Encryption," IEEE Transactions on Services

Computing, published on line 2017, DOI:

10.1109/TSC.2017.2768045.

[14] Y. C. Chang and M. Mitzenmacher, "Privacy preserving keyword

searches on remote encrypted data," in International Conference on

Applied Cryptography and Network Security, 2005, pp. 442-455.

[15] E. J. Goh, "Secure Indexes," Submission, 2003.

[16] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, "Fuzzy

keyword search over encrypted data in cloud computing," in

INFOCOM, 2010 Proceedings IEEE, 2014, pp. 1-5.

[17] C. Guo, N.Q. Luo, M.Z. Alam Bhuiyan, and et al., “Key-aggregate

Authentication Cryptosystem for Data Sharing in Dynamic Cloud

Storage,” Future Generation Computer Systems, vol. 84, pp. 190-

199, 2018.

[18] D. Barbará, H. Garcia-Molina, and D. Porter, "The Management of

Probabilistic Data," IEEE Transactions on Knowledge & Data

Engineering, vol. 4, pp. 487-502, 1992.

[19] Lakshmanan, V. S. Laks, Leone, Nicola, Ross, Robert, et al.,

"ProbView: a flexible probabilistic database system," Acm

Transactions on Database Systems, vol. 22, pp. 419-469, 1997.

[20] Y. Zhang, X. Lin, W. Zhang, J. Wang, and Q. Lin, "Effectively

Indexing the Uncertain Space," IEEE Transactions on Knowledge

& Data Engineering, vol. 22, pp. 1247-1261, 2010.

[21] F. Angiulli and F. Fassetti, "Indexing Uncertain Data in General

Metric Spaces," IEEE Transactions on Knowledge & Data

Engineering, vol. 24, pp. 1640-1657, 2012.

[22] P. Paillier, "Public-key cryptosystems based on composite degree

residuosity classes," in International Conference on Theory and

Application of Cryptographic Techniques, 1999, pp. 223-238.

[23] R. A. Popa, F. H. Li, and N. Zeldovich, "An Ideal-Security Protocol

for Order-Preserving Encoding," in IEEE Symposium on Security

and Privacy, 2013, pp. 463-477.

[24] A. Boldyreva, N. Chenette, Y. Lee, and A. O'Neill, "Order-

Preserving Symmetric Encryption," in Advances in Cryptology -

EUROCRYPT 2009, International Conference on the Theory and

Applications of Cryptographic Techniques, Cologne, Germany,

April 26-30, 2009. Proceedings, 2009, pp. 224-241.

[25] B. Dan, E. J. Goh, and K. Nissim, Evaluating 2-DNF Formulas on

Ciphertexts: Springer Berlin Heidelberg, 2005.

[26] D. Catalano and D. Fiore, "Using Linearly-Homomorphic

Encryption to Evaluate Degree-2 Functions on Encrypted Data," in

ACM Sigsac Conference on Computer and Communications

Security, 2015, pp. 1518-1529.

[27] F. Kerschbaum and A. Schroepfer, "Optimal Average-Complexity

Ideal-Security Order-Preserving Encryption," pp. 275-286, 2015.

[28] J. Graff, Introduction to Modern Cryptography: Chapman &

Hall/CRC, 2000.

