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Abstract—This paper gives two contributions to the 

state-of-the-art for viticulture technology research. First we 
present a comprehensive review of computer vision, image 
processing, and machine learning techniques in viticulture. We 
summarise the latest developments in vision systems and 
techniques with examples from various representative studies 
including harvest yield estimation, vineyard management and 
monitoring, grape disease detection, quality evaluation, and grape 
phenology. We focus on how computer vision and machine 
learning techniques can be integrated into current vineyard 
management and vinification processes to achieve industry 
relevant outcomes. The second component of the paper presents 
the new GrapeCS-ML Database which consists of images of grape 
varieties at different stages of development together with the 
corresponding ground truth data (e.g. pH, Brix, etc.) obtained 
from chemical analysis. One of the objectives of this database is to 
motivate computer vision and machine learning researchers to 
develop practical solutions for deployment in smart vineyards. 
We illustrate the usefulness of the database for a color-based 
berry detection application for white and red cultivars and give 
baseline comparisons using various machine learning approaches 
and color spaces. The paper concludes by highlighting future 
challenges that need to be addressed prior to successful 
implementation of this technology in the viticulture industry. 

 

Index Terms—Viticulture, computer vision, machine vision, 
visual computing, image processing, machine learning. 

I. INTRODUCTION 

he domesticated grape is an important fruit crop from an 
economic perspective and  is also one of the oldest with a 

long history of cultural significance. It is believed that Vitis 
vinifera has its beginnings in an area between the Black Sea and 
Caspian Sea but today there are over ten thousand varieties 
grown across the globe. In terms of land area designated for 
wine production, Spain is first, followed by other countries like 
France and Italy [1]. The viticulture industry is also important 
in countries like the United States, Australia and Chile. Suitable 
environmental conditions and appropriate cultural practices 
throughout the season are required to ensure optimal grapevine 
performance and grapes that will match the desired wine style 
[2]. The harvest can vary substantially from year to year and 
also within the vineyard due to soil conditions, climate, disease, 
pests, and vineyard management practices. In vineyards using 
traditional practices, tasks are human performed; they can be 
time consuming and lead to physical stress and fatigue. In 
recent decades and especially over the last few years, new 
technologies have been implemented to allow the automation 
of many tasks.  

Such technologies include robotics, remote sensing, and 
wireless sensor network (WSN) technologies. Modern 
agricultural machines utilize automation technologies to 
control the movement within the vineyard (in terms of speed 
and direction of travel and steering angle) and to manage the 
agronomic operations. Advanced location technology makes it 
possible to have an automatic guidance system based on the use 
of GPS and sensors [3]. For example, tractors have been 
engineered to perform site-specific operations autonomously 
without human intervention through the interpretation of 
prescription maps made with monitoring sensors mounted on 
board. There are many commercial solutions for Variable Rate 
Technology (VRT) deployment in vineyards. The practical 
deployment of robotics in precision viticulture is still in the 
emerging phase, but many projects are already in the final 
stages of development, and some have already been put on the 
market. Examples of robot prototypes and commercial 
solutions for viticulture are VineRobot [4], VINBOT [5], 
VineGuard [6], Wall-Ye [7], VRC Robot [8], Vitirover [9], and 
Forge Robotic Platform [10].  

The application of remote sensing technologies to precision 
viticulture has allowed the description of vineyard spatial 
variability with high resolution. The use of image acquisition 
performed at a distance with different scales of resolution is 
able to describe the vineyard by detecting and recording 
sunlight reflected from the surface of objects on the ground. 
Platforms used in remote sensing are satellites, aircraft, 
helicopter and unmanned aerial vehicles (UAVs). However, 
they either produce single or few synoptic views over the entire 
vineyard because data capture is expensive, and therefore 
unlikely to be adopted by vineyard managers for continuous 
measurements or monitoring. Wireless sensor network (WSN) 
technologies are useful and efficient for remote and real-time 
monitoring of important variables involved in grape 
production. A WSN is a network of peripheral nodes consisting 
of a sensor board equipped with sensors and a wireless module 
for data transmission from nodes to a base station. The data can 
be processed or stored and is accessible to the user. A 
comprehensive review on the state of the art of WSNs in 
agriculture can be found in Ruiz-Garcia et al. [11]. The use of 
remote image sensing has been the focus of much of the 
research in viticulture but it falls outside the scope of this 
review. Similarly, WSNs, automation technologies and robots 
without image sensing or computer vision and machine 
learning also fall outside of the scope of this paper. The reader 
can refer to the available reviews on automation and robotics 
[12], [13], remote sensing [14], [15], and WSNs [16], [l1] in 
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viticulture and agriculture. 
Potential emerging viticulture technologies are not fully 

mature and there are several challenges to be addressed. While 
much of the work to date is promising, we have not yet 
achieved the “vineyard of the future”, where these technologies 
can provide powerful tools that can be adopted by viticulturists 
to inform the management of their vineyards. These involve 
automatic leaf area estimation, fruit harvesting, yield 
estimation, grape quality evaluation and grapevine variety 
identification. Further challenges include accurate yield 
estimation and quality control, because such factors are 
affected by environmental and biotic variables (soil factors, 
climate, plant diseases), farming factors such as irrigation and 
the application of agrichemicals (pesticides, fertilizers, 
herbicides) [18], [19], and other agricultural tasks [20] (shoot 
thinning, bunch thinning, etc.).  

This paper gives two contributions to the state-of-the-art for 
viticulture technology research. The first component presents a 
comprehensive review of the use of computer/machine vision, 
image/visual processing, and machine learning techniques in 
viticulture. To the best of our knowledge, such a 
comprehensive review of these fields for viticulture has not yet 
been reported. We review the latest developments in these areas 
for both laboratory-based and in-field techniques. We will 
demonstrate that these vineyard monitoring techniques are 
targeted at harvest yield estimation, grape disease detection, 
grape phenology assessment and crop quality evaluation, with 
the overall aim to aid vineyard management decisions. The 
second part of the paper presents a new database called 
GrapeCS-ML which consists of images of grape varieties at 
different stages of development together with the 
corresponding ground truth data (e.g. sugar content, acid levels, 
etc.) obtained from chemical analysis. Again, to the best of our 
knowledge, no such database is currently available for the 
research community in computer vision and machine learning. 
The availability of such a database is important to computer 
vision and machine learning researchers so that they are able to 
compare between techniques using common datasets. It is 
expected that the information contained in the database will 
spur new computer vision and machine learning research by 
providing training data for new algorithms and image 
processing techniques.   

The remainder of the paper is organized as follows. Section 
II provides a comprehensive review of computer vision and 
machine learning for viticulture technology research focusing 
on representative studies. Section III presents the GrapeCS-ML 
database and gives details on the datasets. Section IV presents 
an illustration of the usefulness of the database to estimate the 
optimal harvest time for white grape cultivars using changes in 
hue color information. Future challenges for viticulture 
technology research are presented in Section V. Finally, 
Section VI concludes the paper. 

 

II. REVIEW OF TECHNOLOGIES AND RESEARCH WITH A FOCUS 

ON THE FIELDS OF COMPUTER VISION AND MACHINE LEARNING 

FOR VITICULTURE 

This section presents a review of recent research relevant to the 
application of computer vision, machine vision, image 
processing and machine learning research for viticulture 
technology focusing on five topics relevant to viticulture 
including harvest yield estimation, vineyard management and 
monitoring, grape disease detection, quality evaluation, and 
grape phenology. Tables I to V list the individual studies 
relevant to each of these topics – the imaging method used, the 
computer vision/machine learning techniques applied, and a 
value assessment of the study.  

The methods can be broadly divided into two main 
approaches: (i) laboratory-based techniques; and (ii) in-field 
techniques. Laboratory-based techniques have the advantage of 
controlled lighting conditions and in the case for accurate berry 
detection the problem of obstruction by leaves and other 
bunches is avoided. The drawback, however, is that these 
methods are destructive. The more challenging approach is to 
perform berry detection in-field in a non-destructive manner. In 
this case, the illumination conditions cannot be controlled, and 
there is the additional obstruction problem. For each 
representative viticulture topic, we will first discuss the 
laboratory-based approaches which have been proposed 
followed by the in-field approaches. We also attempt to present 
a chronological sequence based on the publication year. Details 
on the grape variety are also included. 

A. Computer Vision and Machine Learning Studies for 
Harvest Yield Estimation in Viticulture 

Yield estimation or forecasting is of critical importance in the 
wine industry. Traditionally, yield forecasts have been 
generated by counting vine number, bunch number per vine and 
includes the manual and destructive sampling of bunches to 
determine their weights, berry size, and berry numbers. Details 
of yield estimations involving traditional methods such as the 
lag phase method and others can be found in [21], [22]. The 
manual process is labor intensive, expensive, and inaccurate. 
For each selected vine, the hand-harvested bunches are 
weighed and counted. From this data, the average number of 
bunches per vine and the average weight per bunch can be 
calculated and this information is then extrapolated to the 
vineyard on the basis of the number of vines per acre. The  
method can be inaccurate if the yield is unevenly distributed 
across the vineyard. Traditional manual sampling methods are 
destructive because a subsample of the bunches or berries are 
removed from the vine.  

Laboratory-based techniques for harvest yield estimation can 
be found in the works by [26], [31]. Battany et al. [26] used a 
flatbed scanner to take images of detached Pinot Noir berries. 
The grayscale images were converted to binary and watershed 
segmentation was used to separate the joined berries and 
counted. Their approach was more accurate and faster than 
manual berry counting, but also involves destructive 
harvesting. In practice, this would also require subjective 
sampling which may cause inaccuracies for yield estimation. 
Tardaguila et al. [31] proposed a methodology to determine the  
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Table I. Representative studies using computer vision and machine learning to estimate yield in viticulture. 

Authors Year Grape 
variety 

Imaging method Computer vision and machine learning techniques Value 

Laboratory-based techniques 
Battany et al. [26] 2008 Pinot Noir Grayscale 

images 
Conversion to binary images and watershed 
segmentation used to separate the joined berries. 

More accurate and faster than 
manual berry counting, but involves 
destructive harvesting. 

Tardaguila et al. [31] 2012   Determine the size and weight of grapes by 
extracting the morphology of a grape using 
Freeman chain code algorithm. 

Approach is impractical for accurate 
and rapid measurement of grape size 
and weight in the field. 

In-field techniques 
Dunn & Martin [23] 2004 Cabernet 

Sauvignon 
16 color RGB 
canopy images 

RGB color features and threshold and tolerance 
values manually set to select “fruit” pixels. 

85% accuracy of the variation for in 
yield combinations. 

Chamelat et al. [24] 2006 Red grape 
clusters 

Color outdoor 
images 

Shape detection using Zernike moments and color 
information using semi-supervised SVM. 

Detection of grape clusters in any 
orientation and size with 99% 
accuracy. 

Rabatel & Guizard 
[25] 

2007  Luminance 
images 

Watershed algorithm and ellipse model fitting to 
contour arcs using least square algorithm. 

Detection of two-thirds of visible 
berries on vine. 

Reis et al. [27], [28] 2011, 
2012 

White and 
red grape 
cultivars 

Night captured 
images 

Color segmentation and mapping and 
morphological operations to fill in holes and 
remove falsely detected small regions. Extension 
work to differentiate between white and red 
grapes 

False detection rate of 9%. 
Classification rates of 97% and 91% 
for red and white grapes 
respectively. 

Nuske et al.  [29], 
[30] 

2011, 
2012 

Green 
grape 
cultivars 

Visible light 
camera mounted 
on vehicle 

Radial symmetry transform, color, texture and 
k-Nearest Neighbor classifier to classify the 
detected points. Extension work by utilizing 
calibration data obtained from previous harvests 
and handpicked samples. 

Prediction of yield to within 9.8% of 
actual crop weight. Achieved a 4% 
and 3% improvement in yield 
estimation accuracy using harvest 
calibration and handpicked samples. 

Murillo-Bracamonte
s et al. [32] 

2012   Segment individual grapes from the image of a 
cluster using the circular Hough transform. 
Reduce false detections using color. 

Method detected berries including 
those partially occluded. 

Diago et al. [33] 2012  70 grapevine 
RGB images 
acquired from 
vineyard 

Supervised classification from RGB images based 
on Mahalanobis distance to characterize 
grapevine canopy and assess leaf area and yield. 

Methodology is able to discriminate 
among seven different classes. 
Performance of 92% accuracy for 
leaves and 98% for grape classes. 

Farias et al. [34]  2012  RGB images FCM-GK and SVM for cluster identification, 
SIFT for mosaic image to avoid overlapping 
regions among images.   

Performance more successful than 
[33], accounts for effects of 
illumination and automatic clusters. 

Liu et al. [35] 2013 Shiraz RGB, HSV, and 
YCrCb images 

Several approaches for classification (color 
histogram, RBF thresholding, and fuzzy 
clustering and SVM). 

RGB thresholding gave a true 
positive rate of 87% with false 
positive rate of 5%, fuzzy clustering 
and SVM gave true positive rate of 
97% with false positive rate of 16%. 

Nuske et al. [36], 
[37] 

2014 Wine and 
table grape 
cultivars 

Vehicle-mounte
d vision system 

Algorithms exploited three prominent visual cues 
(shape, color and texture) using a classifier which 
detects berries which has similar color to the 
background of vine leaves. 

75% of spatial yield variance and 
with an average error between 3% 
and 11% of total yield. 

Davinia et al. [38] 2014 Red table 
grape 
cultivars 

High-resolution 
images (night) 
with artificial 
illumination  

Threshold-based, Bayesian classifier, 
Mahalanobis distance, histogram segmentation 
and linear color model segmentation for RGB and 
HSV color spaces. 

Best segmentation method was 
threshold segmentation in HSV 
color space (10.01% estimation 
error). Yield errors obtained were 
16% and 17% for two yield 
estimation methods. 

Liu et al. [39], [40] 2015 Red grape 
cultivars 

Standard 
compact camera 

Combination of texture and color information 
followed by SVM classification. Estimate the 3D 
structure of grape bunches from a single image. 

Average accuracy of 87.3% relative 
to the actual number of berries on a 
bunch. 

Luo et al. [41] 2015 Black grape 
images 

 Improved artificial swarm optimization fuzzy 
clustering. 

Accuracy of 90.33% was achieved. 

Luo et al. [42] 2016  Digital camera Artificial bee colony and fuzzy clustering with 
AdaBoost framework. 

Accuracy rate up to 96.56% was 
achieved. Under three various 
illuminations in the vineyard, 
average detection rate was 93.74%. 

Vincent et al. [43] 2016  Color-based 
grape images 

Feedforward neural networks (FFNN) with four 
classes (night time red berries, night time white 
berries, day time red berries and day time white 
berries). 

Average classification rate of 93% 
could be achieved. FFNN could 
slightly outperform SVM in 
computation time. 

Aquino et al. [44] 2017  Color-based 
images 

Smartphone application using mathematical 
morphology and pixel classification (three-layer 
neural network, SVM) for grapevine berry 
counting. 

Three-layer neural network 
performed better than the SVM. 
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size and weight of grapes by extracting the morphology of a 
grape using the Freeman chain code algorithm. Their method 
was not developed for grape bunches but for individual berries 
under laboratory conditions. Although significant progress has 
been made, the approach is still impractical for the accurate and 
rapid measurement of berry size and weight in the field.  

Field-based techniques for harvest yield estimation can be 
found in the works by [23]-[25], [27]-[30], [32]-[44]. An early 
approach was proposed by Dunn & Martin in 2004 [23]. The 
authors studied the relationship between fruit weight and the 
ratio of fruit pixels to total pixels from 16 color RGB images of 
the canopy of Cabernet Sauvignon grapevines as the vine was 
progressively harvested. Threshold and tolerance values were 
then set manually to select the “fruit” pixels from a single 
image. These values were then used for the subsequent analysis 
of the remaining images, and the segmented “fruit” pixels were 
counted. Using this approach, their experiments accounted for 
85% of the variation in yield for the various levels of fruit 
removal. Chamelat et al. [24] developed an approach that 
combined shape detection with color information using a 
semi-supervised Support Vector Machine (SVM) classifier to 
detect red grape bunches. Their technique allowed the detection 
of the grape bunches in different orientations and sizes with a 
99% success rate. The method by Rabatel & Guizard [25] used 
a watershed algorithm to detect the separation of berry contours 
from luminance discontinuities with ellipse model fitting of the 
contour arcs using the least square algorithm. Their method 
could detect two thirds of the visible berries on the vine. The 
authors concluded that the size estimation would be more 
accurate by introducing adaptive thresholding in the watershed 
algorithm and the model fitting using a multivariate 
semi-supervised classification. 

A different approach was proposed by Reis et al. [27] to 
detect bunches from white and red grape cultivars using night 
captured images. Color segmentation and mapping was 
implemented to generate a binary image. Morphological 
dilation was applied to fill in holes between pixels and small 
regions were removed. The orientation of each bunch and the 
stem location was determined from the pixel distribution and 
density around the bunch centre. The authors reported a false 
detection rate of 9% for all images used in their experiment. 
The authors extended the work in 2012 [28] to differentiate 
between white and red grapes and achieved classification rates 
of 97% and 91% for red and white grapes respectively. Nuske 
et al. [29] proposed an automated computer vision method 
based on shape and visual texture to identify and count green 
grape berries against a green leaf background. Their approach 
used a visible light camera mounted on a small vehicle driven 
along the rows in a vineyard. Their algorithm was comprised of 
several components to enable berry detection. They first used 
the radial symmetry transform to identify berry locations. Then, 
a combination of color and texture features followed by the 
k-Nearest Neighbor classifier was used to classify the detected 
points. The final stage removes false positive detections for 
berries which do not have at least five berries in close 
proximity. Their approach can predict yield to within 9.8% of 
the actual crop weight. The authors performed an extension of 

the work in 2012 [30] by utilizing calibration data obtained 
from previous harvests and a small set of handpicked samples. 
This approach achieved a 4% and 3% improvement in yield 
estimation accuracy above the previous harvest calibration and 
the handpicked samples respectively. Murillo-Bracamontes et 
al. [32] proposed an advanced approach to segment and identify 
individual grapes from the image of a cluster using the circular 
Hough transform. Their method was robust enough to detect 
partially occluded berries. False detections were reduced using 
color information. A group of researchers in Spain [33] 
proposed a grapevine yield and leaf area estimation technique 
using supervised classification in RGB images based on the 
Mahalanobis distance parameter to characterize the grapevine 
canopy and assess the leaf area and yield. Their classification 
methodology is able to discriminate among seven different 
classes (grape, wood, background and leaf (with four classes 
based on increasing leaf age). Their results revealed a high 
performance of 92% accuracy for leaves and 98% for clusters. 
Their method is more successful than other approaches due to 
its capability to identify various classes of tissue. 

Farias et al. [34] proposed an image acquisition and 
processing framework for in-field grape and leaf detection and 
quantification. Their framework has six steps: (1) image 
segmentation based on Fuzzy C-Means with Gustafson Kessel 
(FCM-GK) clustering; (2) obtaining the centroids which are the 
FCM-GK outputs as seeding for k-Means clustering; (3) 
Cluster identification generated by k-Means using SVM; (4) 
Morphological operations over grape and leaf clusters to fill 
holes and eliminate small clusters; (5) a Scale-Invariant Feature 
Transform (SIFT) to create a mosaic image to avoid 
overlapping regions among images; and (6) Finding centroids 
in the grape bunches by calculating the areas of leaves and 
grapes. The performance of their method is more successful 
than that of [33] since the method accounts for illumination 
artifacts and automatically clusters the training data. The work 
by Liu et al. [35] aimed to accurately estimate the weight of 
fruit on the vine. They first photographed manually harvested 
bunches in a laboratory environment to provide a baseline for 
the accuracy of the weight calculation. The authors investigated 
several approaches for classification (color histogram, RBF 
thresholding, and fuzzy clustering and SVM). The authors 
concluded that two important parameters affect the 
performance of the histograms: (i) the color space used, and (ii) 
the number of bins in the histogram. Their results showed that 
RGB thresholding gave a true positive rate of 87%, with a false 
positive rate of 5%, whilst fuzzy clustering and SVM results in 
a true positive rate of 97%, with a false positive rate of 16%.  

In 2014, Nuske et al. extended work [36], [37] that was 
centered on a vehicle-mounted vision system. Their algorithms 
processed images by exploiting three prominent visual cues 
(shape, color and texture) using a classifier which detects 
berries which has similar color to the background of vine 
leaves. Methods were also introduced to maximize the spatial 
variance and the accuracy of the yield estimates by optimizing 
the relationship between image measurements and yield. The 
experimental results conducted over four growing seasons for 
wine and table grapes demonstrated yield estimates that capture 
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up to 75% of spatial yield variance and with an average error 
between 3% and 11% of total yield. Another approach was 
proposed by Davinia et al. [38] for yield estimation using the 
analysis of high-resolution images obtained with artificial 
illumination at night. Their work first assessed different 
pixel-based segmentation approaches to detect red grapes to 
obtain the best estimation of the cluster areas in these 
illumination conditions. They used various methods including 
threshold-based, Bayesian classifier, Mahalanobis distance, 
histogram segmentation and linear color model segmentation, 
and investigated the RGB and HSV color spaces. Their results 
showed that the best segmentation method for non-occluded 
red table grapes was threshold segmentation in HSV color 
space, resulting in 10% estimation error after morphological 
filtering. The authors proposed two procedures for yield 
estimation: (1) The number of pixels corresponding to a cluster 
of grapes is computed and converted directly into a yield 
estimate; and (2) The area of a cluster of grapes is converted 
into a volume. The results with these proposed methods gave 
yield errors of 16% and 17% respectively. 

Liu et al. [39] presented a work in 2015 using a combination 
of texture and color information with SVM classification. The 
bunch segmentation method has three stages (image 
pre-processing, training using a training dataset and testing 
segmentation on the test dataset). Morphological operations are 
performed in HSV color space on both training and testing 
images to extract the initial bunch hypotheses. A shape filter is 
then applied to exclude incorrectly identified bunches. A new 
approach for yield estimation was proposed by Liu et al. [40] to 
estimate the 3D structure of grape bunches from a single image. 
The proposed 3D model based on a single image is appropriate 
for a bunch with distinguishing shoulders but it cannot achieve 
a good estimation of berry numbers on a bunch with 
overlapping shoulders. Their experiments on two varieties 
revealed an average accuracy of 87.3% relative to the actual 
number of berries on a bunch. Researchers in China aimed to 
detect the grape clusters in a vineyard using image processing 
and machine learning [41]. They proposed an image 
segmentation method based on an improved artificial swarm 
optimization fuzzy clustering. The fitness function of the 
artificial colony was improved based on the objective function 
of the fuzzy C-average clustering (FCM) algorithm. Image 
segmentation was then performed based on the maximum 
membership principle. They conducted their experiment on 
black grape images taken under normal light illumination and 
an accuracy of 90.33% was achieved. Luo et al. continued their 
research by proposing grape image segmentation based 
onartificial bee colony and fuzzy clustering and the AdaBoost 
framework [42].   In the initial step, the effective color 
components of grape clusters were extracted to construct the 
linear classification models based on a threshold. In the second 
component, an advance classifier was constructed by using the 
AdaBoost framework. The authors used 900 testing samples to 
verify the performance and an accuracy rate of up to 96.56% 
was achieved. They also tested the performance of their work 
using 200 images captured under three various illuminations in 
the vineyard and the average detection rate was 93.74%. 

Vincent et al. [43] applied feedforward neural networks 
(FFNN) to address the problem of color-based grape detection 
for in-field images. The authors considered four classes (night 
time red berries, night time white berries, day time red berries 
and day time white berries). Different light conditions on grape 
varieties were investigated and the influence of different color 
models was also examined. Their simulation results showed 
that an average classification rate of 93% could be achieved. 
The comparison with SVM revealed that FFNN could slightly 
outperform SVM in computation time. A recent approach for a 
smartphone application was proposed by Aquino et al. in 2017 
[44]. The grape cluster is placed in front of a dark cardboard for 
analysis. The authors proposed a new image analysis algorithm 
based on mathematical morphology and pixel classification for 
grapevine berry counting. The methodology has two main 
stages. Initially, images were down-sized and converted to the 
CIELab color space. In the first stage, a set of berry candidates 
was extracted from the image using morphological filtering. 
The bright spots produced by light reflection from the berry 
surface were detected by finding the regional maxima of 
illumination. In the second stage, false positives (FP) were 
eliminated. This elimination process was performed by means 
of pixel classification using a classifier input with a set of key 
descriptors, and trained by supervised learning. This process 
involved a set of six morphological and statistical descriptors 
(grouped into shape (one descriptor), normality (one 
descriptor) and color descriptors (four descriptors)) to form a 
feature space used to train a classifier for FP discrimination. 
Two classifiers, a three-layer neural network and an optimized 
SVM were considered in their work. Their experimental results 
showed that the three-layer neural network performed better 
than the SVM. The authors informed that the method would be 
implemented in smartphone devices in the near future.   

B. Computer Vision and Machine Learning for Pruning and 
Assessments of Shoot Characteristics for Vineyard 
Management and Monitoring in Viticulture 

Wireless Sensor Networks (WSNs) are popular in vineyard 
management and monitoring. WSN technologies can provide 
an efficient and useful tool for remote and real-time monitoring 
of essential parameters involved in grape production, 
processing the data and transmitting the required information to 
the grape growers. Works for viticulture on WSNs without 
image processing technologies can be found in [45]-[49]. There 
are commercial companies currently offering such monitoring 
solutions for vineyards. For example, VintiOS [53] is a 
precision agriculture software that supports vine growers. 
Another tool named Monet [54] monitors the health of a 
vineyard including the risk of developing certain diseases, 
weather information, and other relevant events. Other solutions 
have been developed by Ranchsystems [55], SmartVineyard 
[56] and Save [57]. For this paper, we do not review WSNs or 
commercial technologies if they do not contain an image 
sensing, computer vision or machine learning component. 

Computer vision and machine learning techniques for 
vineyard management and monitoring can be found in the 
works by [45]-[52]. An early work by McFarlane et al. [45] 
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applied image analysis to vine pruning. The authors suggested 
that the bottom position of the branches could not be 
determined accurately enough because the visualization system 
had very little understanding of the vine structure but they 
reported a success rate of 80% with their techniques. The work 
by Svensson et al. [46] applied image processing to determine 
shoot count and canopy density. In 2006, a research team from 
the University of Adelaide (Gao & Fu) [47] proposed a new 
technique based on computer vision to tackle pruning of those 
grapevine varieties that are fruitful in the basal bud area and 
thus suitable for the 2-bud spur pruning method. This group 
later extended the work to include stereo vision [48]. The 
authors developed a new algorithm using image processing, 
image analysis and stereo vision to locate the pruning positions 
and demonstrated the feasibility of automatic grapevine 
pruning. The images captured from the stereo cameras were 
first pre-processed to obtain binary images. Image analysis was 
then used to identify different parts of the grapevine and obtain 
the 2D positions of the cutting points. The authors designed 
algorithms to locate the cordon, the branch and the nodes. Their 
experimental results gave a success rate of 85%. A vineyard 
health assessment protocol combining WSNs with image 
sensing techniques was proposed by Jaime et al. [49]. The 
researchers introduced a WSN where each sensor node 
captured images from the field and used image analysis to 
detect leaf color changes induced by physiological deficiencies, 
pests and diseases or other harmful agents. The first step 
estimates an average leaf size for use in later steps. A threshold 
is then applied to the remaining pixels to eliminate those that do 
not meet a color condition corresponding with the bad 
(stressed) leaves. Further processing makes sure that the ground 
is not mistakenly identified as stressed leaves because of their 
similar color. When the symptom is detected, the sensor node 
sends a message to the WSN sink to notify the grower.  

 There are several applications where bud detection in 

vineyard images is critical for providing potential solutions to 
grapevine pruning, grapevine plant phenotyping and 3D 
reconstruction of the plant structure and components. The work 
by Xu et al. [50] proposed a machine vision algorithm to detect 
the buds of grape vines in winter. Color RGB images were 
captured indoors. The blue component was used for image 
preprocessing such as filtering, threshold segmentation and 
noise removal to obtain the binary image. The Rosenfeld 
algorithm for thinning was then applied to the binary image to 
extract the skeleton of the grape branches, and the Harris corner 
detection algorithm was applied to detect the point of buds from 
the skeleton image. Their experimental results gave a detection 
rate of 70.2%. A recent approach combining machine vision 
with robotics to locate the spatial coordinates of the cutting 
points on a peduncle of grape bunches can be found in the work 
by Luo et al. [51]. The authors proposed a technique to acquire 
spatial information of grape bunches based on binocular stereo 
vision. Their technique consisted of four stages. The first stage 
performed a calibration of the binocular cameras and then 
applies a correction. The second stage detects the cutting points 
on the peduncle and the centers of the grape berries. This is 
followed by extraction of the three-dimensional spatial 
coordinates of the points, and the final stage calculates the 
bounding volume of the grape clusters. In their experiments, 
300 images from the vineyard were captured and tested to 
verify the performance of their technique. Their results gave a 
success rate of approximately 87%. The authors also found that 
the elapsed time of the overall technique was less than 0.7s, 
indicating that their algorithms could be deployed on 
harvesting robots.  

 Recently, a comprehensive approach for grapevine bud 
detection under natural field conditions to aid in winter pruning 
was proposed by Perez et al. [52]. Their proposed approach 
used the Scale-Invariant Feature Transform (SIFT) for 
obtaining the low-level image features, Bag-of-Features for 

Table II. Representative studies focusing on pruning and shoot characteristics using computer vision and machine learning. 

Authors Year Application Imaging 
method 

Computer vision & machine learning techniques Value 

McFarlane et al. [45] 1997 Grapevine 
pruning 

  Success rate of 80% to the problem 
of vine pruning. 

Svensson et al. [46] 2002 Shoot count 
and canopy 
density 

  Shoot counting and assessment of 
the canopy to estimate density. 

Gao & Fu [47] 2006 Grapevine 
pruning 

   

Gao [48] 2011 Grapevine 
pruning 

Stereo 
cameras 

 Success rate of 85% for locating 
pruning and cutting positions. 

Jaime et al. [49] 2011 Multipurpose 
stress 
detection in 
vine leaves 

WSNs with 
image sensing 
nodes 

Thresholding of leaf size to discriminate between 
stressed leaf and ground. 

Sensor node sends message to WSN 
sink to notify grower when unusual 
leaves detected. 

Xu et al. [50] 2014 Grapevine 
bud detection 

Color RGB 
images 

Preprocessing, Rosenfeld thinning algorithm, 
Harris corner detector 

Detection rate of 70.2%. 

Luo et al. [51] 2016 Locate  
cutting points 
on bunchstem 

Binocular 
stereo cameras 

Image calibration,  Success rate of approximately 87%. 
Elapsed time was less than 0.7s, 
feasible for deployment on 
harvesting robots. 

Perez et al. [52] 2017 Grapevine 
bud detection 

 Scale-Invariant Feature Transform (SIFT) for 
low-level features, Bag-of-Features for image 
descriptors, SVM for classification. 

Classification recall greater than 
0.89 in patches containing at least 
60% of the original bud pixels. 
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building the image descriptors and the SVM for classification. 
The classification algorithm was intended to be used on patches 
produced by scanning-window detection algorithms. Their 
experiment evaluated images containing buds of at least 100 
pixels in diameter. Their results showed that the approach could 
achieve a classification recall greater than 0.89 in patches 
containing at least 60% of the original bud pixels, where the 
proportion of bud pixels in the patch is greater than 20%, and 
the bud is at least 100 pixels in diameter. Better results were 
obtained for patches that hold between 90% and 100% of the 
bud pixels and these pixels represent between 20% and 30% of 
the patch, i.e. patches from three to five times larger than buds 

C. Computer Vision and Machine Learning Studies for 
Disease Detection in Viticulture 

Disease detection is an intensive research area in viticulture. 
Diseases can be caused by fungi or bacteria. Common grape 
diseases caused by fungi are downy mildew, powdery mildew, 
anthracnose, grey mold and black rot. The grown call disease is 
an example of a disease caused by bacteria. Fungal diseases 
such as powdery mildew, downy mildew and botrytis can cause 
severe problems economic losses. For example, botrytis can 
decrease yield and wine quality [58] and downy mildew can 
taint the flavor of wine [59]. Given the significant impact and 
economic costs of diseases, it is important to automate the early 
detection of these diseases in vineyards. The use of imaging 
techniques for disease detection is challenging for several 
reasons: (1) The grapes may be covered by a natural bloom and 
this has similar visual characteristics to that of diseased berries, 
thus decreasing the detection accuracy; (2) The signs and 
symptoms exhibited by a disease may be different depending 
on the development stage of the disease and the variety of the 
grape; (3) More than one disease can be present at the same 
time; and (4) Factors such as nutrient deficiencies, pesticides, 
and weather can also produce similar symptoms to those of 
diseases. This section reviews current research using image 
processing, computer vision and machine learning for the 
detection of diseases in viticulture. 
 An image technique for downy mildew detection was 
proposed by Boso et al. [60] in 2004. In this early study, mature 
leaves with oily spots exhibiting symptoms of downy mildew 
were digitally photographed on the vine and analyzed using the 
anaySIS 3.0 software tool. The number of spots to determine 
the severity and intensity of the infection of eight different 
clones of the grape cultivar Albariño were counted. This work 
showed that image processing techniques could deliver a means 
of rapid, reliable and quantitative early detection of the disease. 
Meunkaewjinda et al. [61] proposed an automatic plant disease 
diagnosis for grape leaf disease. Their system has three main 
stages (color segmentation of the grape leaf, grape leaf disease 
segmentation, and analysis & classification of the disease). 

Grape leaf color segmentation was first performed to filter out 
irrelevant background information. The authors applied a 
hybrid approach using a self-organizing feature map (SFOM) 
together with a backpropagation (BP) neural network to 
recognize colors of the grape leaf. A modified DOM model 
with a genetic algorithm (GA) for optimization was used to 
perform the grape leaf disease segmentation. The segmented 
image was then passed through a Gabor wavelet filter to allow 
more efficient analysis of leaf disease color features. The SVM 
was applied to classify the grape leaf disease. Their approach 
could categorize the leaf images into three classes (scab 
disease, rust disease and no disease) and demonstrated the 
potential for automatic diagnosis of grapevine diseases. 
Peresotti et al. in [62] reported the development of a simple 
image analysis-based semi-automatic method for the 
quantification of grapevine downy mildew sporulation using a 
compact digital camera and the open source software ImageJ. 
They first artificially inoculated small discs of a grapevine leaf 
and then took photographs over several days. The color of the 
capture images was then balanced using ImageJ. Rolling Ball 
background subtraction and median-cut color quantization 
were then used to quantify the sporulation of the image to 
8-bits, and the ImageJ auto-thresholding feature was used to 
select the area to be measured. 

Li et al. [63] proposed an image recognition technique to 
conduct the identification and diagnosis of grape downy 
mildew and grape powdery mildew. In their approach, images 
were pre-processed using nearest neighbor interpolation to 
compress the image prior to removal by a median filter. The 
k-means clustering algorithm was used to perform 
unsupervised segmentation of the disease images. Fifty shape, 
color and texture features were extracted from the images of the 
diseases, and the SVM classifier was used to perform the 
disease recognition. Their experimental results (testing phase)  
gave recognition rates of grape downy mildew and grape 
powdery mildew of 90% and 93.33%, respectively. The authors 
work provided an effective approach for rapid and accurate 
identification and diagnosis of plant diseases. It also provided a 
basis and reference for further development of automatic 
diagnostic systems for plant diseases. 

In 2013, grape farming in India faced a threat from leaf 
diseases. Sanjeev et al. [64] proposed a diagnosis and 
classification approach for grape leaf diseases using neural 
networks. In their approach, the grape leaf image with a 
complex background is input to the system. Thresholding was 
then applied to mask green pixels. This was followed by noise 
removal using anisotropic diffusion, followed by grape leaf 
disease segmentation using k-means clustering. The authors 
used the feedforward BP network to perform the classification. 
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Pradnya et al. [65] developed a system for grape disease 
detection by inspection of leaf features. The authors used five 
steps in their approach (color transformation, masking green 
pixels, segmentation, color co-occurrence, and texture feature 
analysis). The RGB leaf images were first captured and 
converted into the Hue Saturation Intensity (HSI) color space. 
Green colored pixels were identified based on a specified and 
varying threshold value obtained using Otsu's method. The 
infected portion of the leaf was extracted, and this infected 
region was segmented into patches of equal size (32×32). In the 
color co-occurrence method (CCM), both the color and texture 
of the image were considered to represent the image. The CCM 
was developed based on spatial gray-level dependence matrices 
(SGDM). The proposed method was tested on black rot, downy 
mildew and powdery mildew. Their experimental results 
showed that their method could support an accurate leaf disease 
detection with lower computational cost.  

Neeraj et al. [66] developed an automatic system for 
diagnosis of grape leaf diseases using image processing and an 
automatic pesticide spraying mechanism to detect and monitor 
three types of diseases (downy mildew, powdery mildew and 

anthracnose). Using the HSV color extraction algorithm, it can 
perform the diagnosis on grape leaf images. Depending on the 
image processing result the disease severity is determined and 
the pesticides are sprayed accordingly. No detail of the 
technical work associated with the image processing can be 
found in their article. The work by Rajendra et al. [67] proposed 
detection and recognition of plant leaf diseases using image 
processing on Android. The authors applied techniques like 
color transformation, masking of green pixels, segmentation, 
and texture feature analysis. Harshal et al. [68] focused on 
detecting downy mildew and black rot through background 
removal segmentation, leaf texture analysis and pattern 
recognition. The segmented leaf texture was retrieved using a 
unique fractal based texture feature and the multiclass SVM 
was used to classify the extracted texture pattern. Their 
experimental results gave an accuracy of 96.6%. Shilpa et al. 
[69] proposed techniques to detect the diseases black rot, 
downy mildew, powdery mildew, anthracnose, gray mold, and 
crown gall. The authors used the Haar wavelet transfom for 
feature extraction and the feedforward network with 
backpropagation was used for classification. Their 

Table III. Representative studies focusing on disease detection in viticulture using computer vision and machine learning. 

Authors Year Vine 
Disease 

Imaging method Computer vision and machine learning techniques Value 

Boso et al. [60] 2004 Downy 
mildew 

Mature leaves 
with oily spots 
photographed 
on the vine 

Analyzed using the anaySIS 3.0 software tool, 
spot count to determine disease severity and 
intensity. 

 

Meunkaewjinda et 
al. [61] 

2008 Scab, rust 
disease 

 Hybrid approach using self-organizing feature 
map (SFOM) together with backpropagation (BP) 
network for color recognition, SVM for disease 
classification. 

 

Peresotti et al. [62] 2011 Downy 
mildew 

Inoculated and 
photographed 
small discs of  
grapevine leaf 

Quantification of grapevine downy mildew 
sporulation using compact digital camera and 
ImageJ. 

 

Li et al. [63] 2012 Downy and 
powdery 
mildew 

 Pre-processing using nearest neighbor 
interpolation, k-means clustering, and SVM to 
perform disease classification. 

Recognition rates of downy mildew 
(90%), powdery mildew (93.33%). 

Sanjeev et al. [64] 2013   Thresholding, k-means clustering, feedforward 
BP network for classification. 

 

Pradnya et al. [65] 2014 Black rot, 
downy and 
powdery 
mildew 

RGB leaf 
images 

Thresholding with color co-occurrence method. Accurate leaf diseases detection 
with lower computational cost. 

Neeraj et al. [66] 2015 Downy and 
powdery 
mildew, 
anthracnose 

 HSV color extraction algorithm.  

Rajendra et al. [67] 2015  Image 
processing on 
Android 

Color transformation, masking of green pixels, 
segmentation, and texture feature analysis. 

 

Harshal et al. [68] 2016 Downy 
mildew, 
black rot 

 Leaf texture was retrieved using unique fractal 
based texture feature and multiclass SVM used to 
classify extracted texture pattern. 

Experimental results gave an 
accuracy of 96.6%. 

Shilpa et al. [69] 2016 Black rot, 
downy and 
powdery 
mildew, 
anthracnose 
gray mold, 
crown gall 

 Haar wavelet transfom for feature extraction and 
feedforward network with backpropagation for 
classification. 

Experimental results gave an 
accuracy of 93%. 

Perez-Exposito et al. 
[70] 

2017 Downy 
mildew 

 VineSens predictive decision-support viticulture 
system with WSNs. 

Alert sent to grower if the 
accumulated index exceeds 80%. 
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experimental results gave an accuracy of 93%. Recently in 
2017, Perez-Exposito et al. [70] proposed a predictive 
decision-support viticulture system with WSNs termed 
VineSens to automate the detection of both primary and 
secondary downy mildew infections. The central server checks 
the infection status daily using environmental parameters, and 
if the accumulated index exceeds a pre-set threshold (e.g., 
80%), an alert is sent to the grower. 

D. Computer Vision and Machine Learning Studies for the 
Evaluation of Bunch Compactness in Viticulture 

Bunch compaction is an emerging focus of computer vision and 
machine learning in viticulture because this bunch 
characteristic has consequences on berry size, yield, fruit split 
and disease incidence [71]-[73]. Traditionally, assessment of 
bunch compactness requires visual inspection by trained 
evaluators and is comprised of subjective and qualitative 
values. Computer vision research for the assessment of quality 
has been frequently performed in the laboratory while research 
involving the assessment of these properties in the field is still 
in its infancy. Works to determine bunch compactness using 
vision systems can be found in [74], [75]. 
 The study by Cubero et al. in 2015 [74] proposed an 
approach to assess grape bunch compactness in a non-invasive, 
objective and quantitative manner using automated image 
analysis. In their approach, color images were taken of 90 
bunches from nine different red varieties. Supervised 
segmentation was performed followed by morphological 
features extraction, and a predictive partial least squares (PLS) 
model was used to assess bunch compactness. Their 
experimental results gave an 85.3% correct prediction rate for 
bunch compactness. The authors also found that the most 
discriminant parameter of the model was highly correlated with 

the tightness of the berries in the bunch and the shape of the 
bunch. Tightness was proportional to the visibility of berries 
and rachis and the number of holes within the bunch, whereas 
bunch shape was proportional to the roundness, the 
compactness, shape factor and aspect ratio. Computer vision 
methods to assess bunch compactness were also studied by 
researchers from the Universitat Politècnica de València, the 
Valencian Institute of Agrarian Research (IVIA) and the 
Instituto de Ciencias de la Vid y del Vino (Research Centre of 
Vine-and-Wine-related Science) (ICVV) [75]. As in the 
previous study, their system could provide information on the 
characteristics of grape bunches based on their morphological 
properties and color. They used a system with a camera and 
incorporated four light sources. Their approach also gave 
information on the visibility of the pedicels, the presence of 
berries deformed by pressure and the spatial relationships 
between geometric characteristics. 

E. Computer Vision and Machine Learning Studies for 
Assessment of Grape Seed Maturity 

Seed maturity is sometimes used as an indicator for the optimal 
time for harvest. Traditional methods for identifying maturity is 
time consuming and subjective because it is often performed by 
a visual and sensory analysis. This can potentially be improved, 
however, with the application of emerging image processing 
and machine learning techniques specifically targeted for this 
purpose.   

Rodríguez et al. [76] presented a study to evaluate the 
potential of computer vision to determine the phenolic maturity 
of grape seeds. The aim of their study was to find relationships 
between the chemical (phenolic composition) and the 
appearance (color and morphological) of the seeds. Their study 
included descriptors such as lightness, chroma, seed length, 

Table IV. Representative studies focusing on bunch compactness using computer vision and machine learning 

Authors Year  Imaging method Computer vision and machine learning techniques Value 
Cubero et al. [74] 2015  Color images of 

90 bunches 
from nine red 
varieties 

Supervised segmentation, morphological features 
extraction, and predictive least squares model. 

Experimental results gave 85.3% 
correct prediction rate. 

Universitat 
Politècnica  [75] 

2015  Camera and 
lighting 
subsystem 

 Provide information on grape 
bunches characteristics based on 
morphological properties, color 
impractical for accurate and rapid 
measurement of grape size and 
weight in the field. 

Table V. Representative studies focusing on grape seed maturity using computer vision and machine learning. 

Authors Year Application Imaging method Computer vision & machine learning techniques Value 
Rodriquez et al. [76] 2012 Grape seed 

phenology 
RGB images of 
Vitis vinifera L.  

DigiEye system and DigiFood software to obtain 
morphological and appearance parameters 
(CIELab coordinates). 

Identified 21 phenolic compounds 
with seed descriptors along grape 
ripening stages. 

Rodriquez et al. [77] 2012 Grape seed 
phenology 

 Discriminant analysis models for morphological 
differences of different varieties. 

Classification of grape seeds with 
high accuracy. 

Avila et al. [78] 2014 Grape seed 
maturity 

120 seed images Two-class (mature, immature) hybrid 
segmentation technique. 379 different descriptors. 

Two descriptors (Haralick and 
Gabor) could be used to separate 
classes. 100% rate for immature 
class, 93% rate for mature class. 

Zuniga et al. [79] 2014 Grape seed 
maturity 

277 seed images Invariant color model to avoid shadows, 
classification architecture of three MLP networks 
trained using Bayesian Regularization. 

Recognition rate of 90% and 86% 
for training and test set respectively. 



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2018.2875862, IEEE
Access

Accepted manuscript for IEEE Access, October 2018. 

roundness and aspect ratio. The authors identified 21 phenolic 
compounds in the seeds and assessed them in relation to the 
morphological seed descriptors. The DigiEye system was used 
to acquire images of the seeds from 100 berry samples, and the 
DigiFood software was used to obtain morphological and 
appearance parameters including the CIELab coordinates from 
RGB. The authors concluded that in some cases there were 
good relationships between the chemical and appearance data, 
and that it is possible to estimate the stage of seed maturity by 
applying forward stepwise multiple regression models to this 
data. A similar work by Rodriquez et al. [77] not only 
characterized the seeds but also included an analysis of the 
berries themselves. Berry size and developmental stage was 
determined by image analysis and the authors established an 
objective Browning Index for the seeds. The authors studied the 
morphological differences among different varieties by 
applying discriminant analysis models to allow the 
classification of the grape seeds with high accuracy.  

Avia et al. [78] presented a hybrid segmentation technique to 
classify seeds according to their degree of maturity. The 
authors used a two-class (mature and immature) classification 
strategy. Their hybrid segmentation technique involved a 
combination of supervised and unsupervised segmentation with 
invariant color models. The supervised segmentation used the 
multilayer perceptron (MLP). For feature extraction, 379 
different descriptors such as Haralick descriptors, intensity 
descriptors, local binary patterns, Gabor features, crossing line 
profiles, Fourier descriptors, and contrast descriptors were 
computed. The Sequential Forward Selection algorithm (SFS) 
was used to determine the most significant descriptors. The 
study revealed that two descriptors (Haralick and Gabor 
descriptors) could be used to separate the two classes. Their 
experiments used a database comprising a total of 120 seed 
images (80 for training and 40 for testing). The classification 
results showed 100% effectiveness for both mature and 
immature classes during training. For the test set, a 100% 
effectiveness was obtained for the immature class and a 93% 
effectiveness for the mature class.  

Zuñiga et al. [79] proposed another grape maturity 
estimation method based on seed images. Their approach 
allowed the classification of three seed classes (immature, 
mature, and over-mature). Their method included image 
acquisition, segmentation, descriptor computation and 
classification. For seed segmentation, the invariant color model 
[81] was applied to avoid shadows and highlights. The c3 
channel was chosen based on the favorable results obtained by 
Avila et al. [80]. The automatic segmentation of this channel 
was performed by the Otsu method [83]. The classification 
architecture comprised of three MLPs (one for each class to be 
identified). The MLP training was carried out by the Bayesian 
Regularization algorithm [82] which provides an objective 
criterion to find the number of neurons in the hidden layer of 
the network and avoids model overfitting. Their results gave a 
recognition rate of 90% for the training and 86% for the test set. 

 

III. GRAPECS-ML DATABASE 

Datasets in an accessible form are required by researchers to 
make progress and advancements in computer vision, image 
processing and machine learning. A dataset is a collection of 
data, images or videos that can be used to evaluate techniques 
for specific applications. Examples of datasets appropriate for 
general applications in computer vision can be found in [84]. 
An evaluation of a suitable and unbiased dataset can validate a 
proposed technique or algorithm. Interestingly, the evolution of 
datasets can also reflect the progress of research in these fields. 
Researchers in computer vision gather datasets that are 
groomed to be within an attainable level of difficulty. Once the 
researchers have saturated performance on those datasets, they 
go in search of another more complicated dataset in order to 
design even better techniques. It is also important to leverage 
multiple datasets because of the bias inherent in any single 
dataset. Viticultural databases include the European Vitis 
Database [85] and the Vitis International Variety Catalogue 
VIVC [86]. However, these databases were not designed for 
computer vision or machine learning research. For example, the 
VIVC currently has data for 23000 cultivars. However, only 
one or few samples are available for each cultivar. This is in 
contrast to the requirements for developing machine learning 
algorithms which require many samples from the same cultivar 
for training and evaluation.  

Here we present a new database called GrapeCS-ML 
Database which has been specifically designed to progress 
computer vision and machine learning research for viticulture. 
A detailed explanation of the considerations and procedures in 
the database construction are also presented. The database 
consists of images of bunches from different grape varieties 
captured in three Australian vineyards and contains different 
datasets for evaluation. To the best of our knowledge, no such 
database is currently available for the research community in 
computer vision and machine learning for viticulture 
technology. The availability of such a database is important to 
researchers because data is required for machine training or 
learning and testing. We hope that the information contained in 
the database will help to spur extensive computer vision and 
machine learning research by providing significant training 
data for learning algorithms and image processing techniques. 
The database consists of five datasets for 15 grape varieties 
taken at several stages of development and includes size and/or 
Macbeth color references. Altogether, the database contains a 
total of 2078 images. Some datasets also include the 
corresponding ground truth data (e.g. TSS, pH, etc.) obtained 
from chemical laboratory analysis.  
 
Dataset 1: 

Dataset 1 contains images of Merlot bunches taken in seven 
rounds from the period Jan. to Apr. 2017. Fig. 1 shows a typical 
growth curve. Initially after flowering, the grape berries 
increase in size rapidly but remains hard and green. This is 
followed by a lag phase, and then with onset of veraison, a 
second growth period occurs along with softening and colour 
development. This phase of grape berry growth is followed by a 
period of engustment when the aromas and flavors of the grape 
intensify[87]. The images in Dataset 1 allow for the 
construction of about 250 growth curves. These data can be 
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